Drones for Hire | Flight Today | Air & Space Magazine
Current Issue
July 2014 magazine cover
Subscribe

Save 47% off the cover price!

A Florida conservation team uses a Nova, developed by the University of Florida, to help count endangered manatees. (Courtesy Julien Martin)

Drones for Hire

The newest eyes in the sky are drawing the attention of power companies, conservation groups, and the ACLU.

Air & Space Magazine | Subscribe

On platforms and tables in a Las Vegas conference room, little machines crawled and jumped, floated and sank, and zoomed across the air-conditioned airspace. The variety of robots and potential robot buyers at the annual gathering of the Association for Unmanned Vehicle Systems International last August indicates the changes that have taken place in the industry. Back in 1973, at AUVSI’s first meeting, there were only a handful of exhibitors and the only drone customer was the U.S. military, looking for small, agile, pilot-free aircraft it could risk sending across enemy lines.

This year, AUVSI made space for 572 exhibitors, most with a cadre of drone models—some hover quietly over a target, others disassemble on command, at least one looks like a flying garbage disposal—and they’re starting to move off the battlefield. In preparation for potential Pentagon budget cutbacks, the unmanned aerial vehicle industry is eager to shift to civilian markets, and, after years of silence on the subject, Congress last February ordered the Federal Aviation Administration to open the skies to drones by September 2015. Although there are many hurdles to cross between now and then, I came away from the AUVSI conference with this much: Pilots, you’ve got steely-eyed competition.

The FAA has focused its initial UAV rollout on small craft, under 25 pounds, which include almost 150 models made in the United States. To streamline the Certificate of Authorization process—a goal mandated by Congress—the agency is fast-tracking these little drones into parts of the domestic airspace, as long as they’re flown under 400 feet and by public safety agencies. (Many other potential users, like land-use managers and scientists, are trying, with some success, to get certificates as well. The FAA is making decisions on a case-by-case basis.) While public safety agencies are putting drones to work on various operations, a handful of sites will soon open to test general airspace integration. This December the FAA plans to designate six, in addition to an existing site, run by New Mexico State University, which since 2011 has tested drones in 15,000 square miles of lightly trafficked airspace around Las Cruces. At the test sites, operators will work out systems and protocols so they can advise the FAA as it creates nationwide regulations.

Unpiloted vehicles—some light enough to be hand-launched and often small enough to fit into a backpack—are already being used for everything from forest fire spotting to animal migration studies. The military-surplus, 4.2-pound AeroVironment RQ-11A Raven is one of two types of drones now flying for the U.S. Geological Survey. The USGS’s National Unmanned Aircraft Systems Project Office flies its Ravens for land management agencies in the Department of the Interior. Each project requires a special waiver from the FAA, which can take from a few months up to a year to obtain. In one test project, a Raven has been examining drainage infrastructure at a West Virginia surface mine. The drone team requires a pilot plus two observers to watch for aerial traffic. After a half-hour to assemble the vehicle, set up the ground terminal (a rugged laptop), a generator, and a communications antenna, launching the fixed-wing Raven is as simple as turning on the motor and hurling it into the air like a javelin. The drone, which has stabilized and gimbaled optical and infrared cameras in its nose, can fly for as long as 90 minutes, beaming live video to a monitor. When the team members see something on the ground that needs more attention, they instruct the Raven to circle the target while the pilot adjusts the camera to keep it in view. The Office of Surface Mining then uses the images to pick out trouble spots, such as a landslide that has blocked the flow of contaminated water to a treatment pond, and an inspector will follow up on foot.

When the Raven’s flight is over, landing is as low-tech as it gets: The vehicle comes to a stall about 20 feet overhead, then plummets nose-first, breaking into designated pieces that are easily reassembled. Reclamation specialist Natalie Carter explains that piloted helicopters once did the overflights, but they have become far too expensive; the office hopes that drones will now help inspectors cover the rugged ground.

“We expect that by 2020, unmanned aircraft will be the primary platform [for data collection] for the Department of the Interior,” says Mike Hutt, USGS’s unmanned aircraft project manager, who notes that drones not only perform surveys once flown by expensive piloted aircraft, but also have started to take on tasks no one has undertaken before. “We have a mandate to record what’s at an archaeological site, which includes ancient artwork,” like cliffside carvings, he says. “A lot of these have never been photographed.”

Drones would be particularly useful in Big Bend National Park in southwest Texas. The 800,000-acre park is one of the most geologically rich sites in the United States, featuring a once-active volcano system and ongoing, large-scale erosion from the melting Rocky Mountain snow that forms the Rio Grande, and it is exceptionally difficult terrain to study on foot.

The USGS has taken on dozens of these kinds of unmanned trials: checking fence lines in Hawaii that keep feral hogs from protected vegetation, counting migratory sandhill cranes, and monitoring the temperatures of mountain streams threatened by climate change.

For surveys of vast areas, fixed-wing drones are suitable, but when the task requires carrying a payload or hovering over a spot, agencies are turning to rotary UAVs. Most have multiple motors, each sitting at the end of arms radiating from a central hub that houses navigational instruments, microprocessors, and a rechargeable battery. Depending on its diameter and number of rotors, a multi-rotor like DraganFlyer X8, microdrone 1000, or Ascending Technologies’ Falcon 8 can lift payloads weighing nearly two pounds.

Typical multi-rotor flights last less than 10 minutes, but some models can stay aloft for more than an hour. In Britain, music video producers and real estate firms have used them to provide potential buyers with aerial videos of properties (not yet legal in the United States). Authorities in Germany used microdrones to carry sampling equipment to test hazardous smoke during a chemical plant fire.

About James R. Chiles

James R. Chiles contributes frequently to Air & Space/Smithsonian. His book on the social history of helicopters and “helicoptrians” is The God Machine: From Boomerangs to Black Hawks.

Read more from this author

Comment on this Story

comments powered by Disqus