The Fight Over Avgas- page 3 | Flight Today | Air & Space Magazine
Current Issue
August 2014  magazine cover
Subscribe

Save 47% off the cover price!

Environmentalists have called for a ban on leaded fuel. Private pilots worry that the ban could kill general aviation. The author is somewhere in the middle. (Photo-illustration by Théo. Nozzles by Chad Slattery. Airfield © 2012 Marc Espolet / iStockphoto.)

The Fight Over Avgas

Can private pilots fly unleaded?

Air & Space Magazine | Subscribe

(Continued from page 2)

There’s little denying, statistically anyway, that general aviation on the whole is depressed. In 1978, FAA records show, about 58,000 student pilots, including me, earned their private pilot certificates. By 2011, the number had dropped to less than 15,000. The number of U.S.-made, piston-powered airplanes has also taken a nose dive, GAMA records reflect. In 1978, 17,811 aircraft rolled off assembly lines in the U.S. In 2011, it was 668.

As to why fewer folks are becoming pilots, nearly everyone agrees that the number one reason is the expense of learning to fly and maintaining an aircraft, and one of the biggest expenses is the cost of fuel.

In California, where I live, avgas can run $6 or more a gallon. My airplane burns about 10 gallons an hour. Factor in repairs, maintenance costs, insurance, tie-down fees, and other expenses, and the proverbial $100 hamburger that pilots like to joke about when they fly somewhere for lunch starts costing more like $200.

The gas we put in our cars and the low-lead avgas that powers my airplane are as different as, well, cars and airplanes. Car gas is what results when petroleum—crude oil—is heated and distilled. Avgas isn’t really gas at all. It’s a synthetic blend of chemicals, including toluene, benzene, and tetraethyl lead. There’s a reason the two fuels are so dissimilar.

Equipped with smaller pistons and combustion chambers, along with a gearbox, automobile engines function at high revolution speeds. Airplane engines are relatively lighter, with bigger cylinders that move comparatively slowly. That requires fuel with a higher octane rating to control what engineers call the “flame front” of the combustion process. A fuel’s octane rating indicates how much the fuel can be compressed before spontaneously igniting. The lower the rating, the lower the amount of compression a fuel can tolerate. When the fuel catches fire by compression rather than by a spark plug, knocking or detonation can occur, and uncontrolled detonation can destroy an aircraft engine in seconds.

That’s where lead comes in. It helps control detonation while preventing friction from forming between the engine valves and valve seats.

It’s not certain who discovered that adding liquefied lead to fuel increases octane rating (ethanol also boosts octane), but many credit the scientists at General Motors in 1921. By the 1930s, the U.S. Army Air Corps was routinely adding about three grams of tetraethyl lead to every gallon of fuel that its aircraft burned. Today’s most commonly used avgas has about two grams of lead per gallon and an octane rating of 100. (Some high-performance aircraft use avgas with an octane rating as high as 145.)

In 1990, Congress amended the Clean Air Act to mandate the removal of lead from all non-road vehicle fuels within five years. Fearing a meltdown of general aviation, lobbying groups determined that airplanes didn’t fall within the statutory definition of off-road vehicles and were thus excluded from the law. Work began in earnest to come up with an unleaded fuel. But more than two decades later, no one has yet introduced a reliable and affordable avgas replacement to the market.

That doesn’t mean ambitious entrepreneurs aren’t trying. Two small companies in particular—Swift Fuels of West Lafayette, Indiana, and Ada, Oklahoma-based General Aviation Modifications, Incorporated (GAMI)—are both confident they have hit upon a potentially viable unleaded fuel alternative.

Swift was born in 2005 as a privately funded, $6 million startup, with the goal of providing general aviation an affordable fuel that is “quasi drop-in”—it would require little, if any, engine modifications. The company today employs 10 people, including vice president of commercial operations Jon Ziulkowski, a type-rated commercial pilot who trained at Purdue University for a career in the airlines but ultimately found his life’s calling in developing aviation fuels.

Comment on this Story

comments powered by Disqus