The Man Who Invented the Predator | Flight Today | Air & Space Magazine
Current Issue
September 2014 magazine cover
Subscribe

Save 47% off the cover price!

An MQ-9 Reaper in its lair at Balad, Iraq, 2008. A bigger, badder Predator, the MQ-9 has a turboprop engine and Y-shaped tail and can carry almost 4,000 pounds of ordnance. (USAF)

The Man Who Invented the Predator

Before he designed the world’s most feared drone, Abraham Karem was just trying to get a robot to stay in the air

Air & Space Magazine | Subscribe

The 40,000 square feet of office and engineering space occupied by Karem Aircraft Inc. in Lake Forest, California, includes four conference rooms, each named for a designer enshrined in the National Aviation Hall of Fame. There’s one for Kelly Johnson of the Lockheed Martin Skunk Works, one for helicopter inventor Igor Sikorsky, a third for aviation legend and flying-wing designer Jack Northrop, and another for Douglas Aircraft genius Ed Heinemann. “People who should make us humble,” says company owner Abe Karem.

From This Story

“There should be an ‘Abe’ conference room,” observes one of Karem’s 13 employees, showing me around the facility while Abe—as everyone calls him—is busy elsewhere.

Undoubtedly the name “Abraham E. Karem” will one day join his conference-room heroes in the hall of fame in Dayton, Ohio. Karem is the designer of the Predator, the unmanned aerial vehicle that turned drones from unreliable oddities into military necessities, starting a technological revolution that is now spreading to civil aviation. Last year, Congress ordered the Federal Aviation Administration to lay the groundwork for opening the National Airspace System to unmanned aircraft.

Early the next morning, Karem arrives. Wearing a sport shirt and slacks and serving me a cup of coffee he’s fetched himself, he hardly acts the irascible genius some acquaintances have described. “I’ve never met a genius,” he playfully assures me as we sit down in the Kelly Johnson room for an interview that will last all day and into the evening. Most conversations with Karem require stamina; his answers are long and filled with parables and philosophy. “I always have metaphors,” he apologizes after one diverting discourse. “If you don’t get it, tell me to stop.” But he doesn’t really mean it.

Karem’s most famous invention is in service with the U.S. and Italian air forces and is currently causing controversy because of its use by the CIA for targeted killings. The Predator is also already on permanent display at the Smithsonian Institution’s National Air and Space Museum, though it hardly looks like an aircraft that was destined to change the world. Constructed of graphite epoxy composites and lighter than an economy car, the MQ-1 Predator, built by General Atomics Aeronautical Systems Inc. (GA-ASI) of Poway, California, is powered by a four-cylinder Rotax 914 piston engine—an Austrian motor used in ultralight sport aircraft—and cruises at a snailish 84 mph. With long, thin wings that stretch 55 feet 9 inches, just more than twice the length of its 27-foot fuselage, the Predator looks less like a warplane than a weekend hobbyist’s glider. Hobbyist sailplanes, though, don’t have turrets under their chins to hold electro-optical and infrared video cameras or noses stuffed with synthetic aperture radars and satellite antennas. Nor do their wings carry laser-guided AGM-114 Hellfire missiles—a key feature added by the Air Force in 2001, seven years after Karem finished his work on the remotely piloted airplane.

No matter how unlikely the Predator looks, its success has changed military aviation. When the Predator fired its first missile in combat—over Afghanistan on October 7, 2001—the U.S. military had a mere handful of UAVs. Today, the armed services own nearly 8,000. Drones of all sizes are now integral to combat operations, primarily providing intelligence, surveillance, and reconnaissance.

Prior to the Predator, though, UAVs were an aviation afterthought. The U.S. military had experimented with pilotless airplanes as “aerial torpedoes” or flying bombs as far back as the first world war, but with no great success—until the Vietnam war, when jet-propelled, camera-equipped drones built by Teledyne-Ryan were launched and controlled from U.S. Air Force C-130s on reconnaissance missions too risky for manned flights. Meanwhile, the CIA and the then-secret National Reconnaissance Office attempted to develop high-altitude, supersonic spy drones to overfly the Soviet Union and China. The efforts were too ambitious, though, for available technology (see “Hitchhikers,” June/July 2012).

During the 1970s and ’80s, UAV development across all U.S. military services cycled through a pattern: high expectation, disappointing performance or budget-busting cost, and withdrawal of support. The necessary technologies—composite materials, microprocessors, digital flight controls, satellite navigation, and broadband satellite communication—were either immature, outrageously expensive, or yet to be invented. In 1975, the Army awarded Lockheed Martin a contract to design a drone for artillery targeting: The MQM-105 Aquila was launched by catapult and recovered in a net. In 1987, after spending $1 billion on the program, the Pentagon cancelled it. Boeing’s extraordinary, high-altitude, long-endurance UAV, the Condor, suffered a similar fate. With a wingspan twice that of a U-2, the manned aircraft it was intended to replace, the Condor began in the late 1970s as an initiative of the Defense Advanced Research Projects Agency (DARPA) and was a useful technology test bed. It reached 67,000 feet and demonstrated an endurance of 60 hours, but only one was built. Today it hangs in the Hiller Aviation Museum in San Carlos, California. The U-2 is still in service.

In the meantime, Abraham Karem was growing frustrated with Israel’s military acquisition system. Born in Iraq on June 27, 1937, Karem was raised in Israel, where his father took his wife and four sons—Abe was the third—when the Jewish state was founded after World War II. A precocious child, Abe felt loved and encouraged growing up, even when, as a toddler, he pulled the back off a large standing radio and pulled out the big vacuum tubes, one by one, to “see where is the man who talks from there.” As that memory suggests, Abe fell in love with engineering early in life.

“I am a toy man,” he explains. “What motivates me from the time I was a kid—call it technology, call it whatever—it was play. By the age of eight, I knew I’m going to be a mechanical engineer. And oh my God, by the age of 13 or 14, I fell in love with aeronautics. At 14, I started building model aircraft. Within two years, I was the instructor in the [high school] aero club.” Later, he earned a private pilot’s license.

Tags

Comment on this Story

comments powered by Disqus