Sky High

My climb to the top in the F-104.

Air & Space Magazine | Subscribe

(Continued from page 3)

I passed my landing reference point at 25,000 feet directly above Edwards’ Runway 04, where I had started the flight about a half-hour before. I’d be landing out of the same dead-stick pattern that the X-15 used: 300 knots indicated airspeed and in a 20-degree dive. Base leg altitude was 15,000 feet, but I had flown the pattern many times before and felt quite comfortable. Rolling out on high final at 6,000 feet, I had the 15,000-foot runway directly in front of me. I started the stick coming back for the flare and lowered the landing gear at 250 knots. I checked to ensure the gear was down and locked just before touchdown at 190 knots.
The tires squealed as they burned rubber on the painted white line that crossed the runway at the 10,000-feet-remaining marker. As I lowered the nose gently onto the runway and pulled the drag chute handle, my chase sped past me in a low approach.

With sweat dripping into my eyes, I looked up at the contrail my zoom had etched against the blue desert sky. I had returned safely from the edge of space.



How the F-104 Starfighter Was Born

During the Korean War, the U.S. Air Force became concerned about the advantage the Soviet MiG-15 had over the Lockheed F-80 Shooting Star and the North American F-86 Sabrejet. The MiGs were lighter and had a greater thrust-to-weight ratio, so they could climb faster and reach higher altitudes than the U.S. fighters. The Air Force was downing 12 aircraft for every one it lost, but that was believed to be due to superior pilot proficiency. The Air Force wanted a jet fighter that would exceed the MiG’s performance in every category.

Chief designers Kelly Johnson of  Lockheed and Lee Atwood of North American Aviation were invited to visit South Korea to talk with Air Force combat pilots. The two men learned that the pilots wanted greater speed, power, and maneuverability.

New aircraft  were already in design or under construction: North American’s F-100 Super Sabre and McDonnell’s F-101 Voodoo, both of which used the Pratt & Whitney J-57 engine. Johnson decided he had to use a more advanced engine. He considered several but chose the General Electric J-79. It was unproven and using it carried some risk, but it had higher thrust than the J-57; if the pilots wanted speed, Johnson would give it to them.

The revolutionary new jet would have Mach 2 speed, be unequaled in time to climb, operate at over 60,000 feet, and combine the attributes pilots wanted. Johnson had to keep airframe weight and drag low. A very thin, straight wing offered excellent performance at high speed. A delta wing has less drag per square foot at transonic speed, but its lift during takeoff and landing is reduced. To compensate, designers had to double its area, so the total drag of a delta wing was greater. The high speed regime, combined with a high thrust-to-weight ratio, pointed to a low-aspect-ratio (in a word, stubby) wing, because it would produce less drag. Johnson proposed a wing so thin and sharp—the leading edge had a radius of only 0.0016 inch—that the edges had to have covers to prevent nicks and keep people from cutting themselves. Ice would not build up on the edge, so there was no need for heavy de-icing equipment. The wings were located  nearly two-thirds of the way back on the fuselage, and the tips were squared off, permitting the installation of jettisonable fuel tanks or the Starfighter's primary armament, a pair of AIM-9 Sidewinder heat-seeking air-to-air missiles.

Comment on this Story

comments powered by Disqus