Current Issue
May 2014 magazine cover
Subscribe

Save 47% off the cover price!

Sky High

My climb to the top in the F-104.

As his parachute opened, he was struck in the face by the base of his rocket seat. His helmet’s visor broke and burning residue from the rocket entered the helmet. Pure oxygen for breathing was flowing to the helmet, igniting a flame that started to fry his neck and face. As he descended, Yeager removed a glove and used his bare hand to try to put out the fire around his nose and mouth, charring two fingers and a thumb. The aircraft hit the ground in a flat attitude, and Yeager landed a short distance from the wreckage. Within a few minutes a helicopter and flight surgeon arrived. Yeager had second-degree burns on the left side of his face and neck and on his left hand, and a cut on one eyelid.

The loss of an NF-104 was not the only bad news that day: Secretary of Defense Robert S. McNamara announced the cancellation of the X-20. The Air Force lost a manned space program, Yeager was injured and wrapped in bandages, and the Air Force had put a hold on his spending.

The two surviving NF-104s were grounded pending an investigation, so I wouldn’t get to fly one. But the standard Starfighter was still the hottest airplane in the Air Force inventory, and I wanted to get into it. As a new student, I got my first flight in the back seat of an F-104 with an instructor, Major Frank E. Liethen, as he conducted a functional check flight, or FCF. Regulations called for an FCF any time major maintenance had been performed. The FCF pilot would fly the repaired aircraft at the limits of its envelope to determine that it was safe for student pilots to fly. Only the most experienced pilots were asked to fly these potentially hazardous flights.

Liethen had been the outstanding student in his class at test pilot school. After a year as a project test pilot at Nellis Air Force Base in Nevada, he returned to Edwards to attend the new space school. After graduation, he became an instructor in the school. He applied to become a NASA astronaut, but he was turned down—too tall. Just as he graduated from space school, the Dyna-Soar program was canceled. His only chance for a spaceflight was the Air Force program called the Manned Orbiting Laboratory, or MOL. Unfortunately, the MOL (canceled in June 1969; see “First Up?” Aug./Sept. 2000.) was on the drawing board at the time, and crew selection was years away.
Before attending the school, I became proficient in flying FCFs in the McDonnell F-101B Voodoo at Hamilton Air Force Base in California. The F-101B and F-104 were both designed in the 1950s as supersonic interceptors. The F-101B was a twin-engine, two-seat aircraft with a radar intercept officer. The F-104 had a pilot, one General Electric J-79 jet engine with afterburner, and a short-range air-to-air radar. It could fire a heat-seeking AIM-9 Sidewinder missile. Both had high wing loading (total weight carried per square foot of wing area), a T-tail, and pitch-up characteristics (see “Now Departing: T-Tails and Other Killers,” p. 70). Both also had electronic systems to prevent a pilot from entering the pitch-up region.
The F-101 had a horn that sounded in the pilot’s helmet as it neared the pitch-up boundary. If the pilot continued to fly the F-101 to an even greater angle of attack or G-force, a mechanical pusher moved the control stick forward. This very complex system required the FCF pilot to adjust the boundaries during flight. The F-104’s instrument panel had an angle-of-attack gauge. To warn the pilot that he was approaching pitch-up, a needle would move into a red area on the gauge. If the pilot continued to increase angle of attack or G-force, a stick shaker system caused the control stick to shake in the pilot’s hand and emitted a sound similar to a rattlesnake’s.
The Starfighter could be a handful and had a terrible safety record; many pilots had been killed flying it. Only a few years earlier, Iven Kincheloe, who had set a world altitude record in the Bell X-2, was killed in a Starfighter when the engine failed just after takeoff. So as Liethen performed maneuvers in the F-104, tickling the pitch-up boundary, I held the control stick ever so lightly in my hand. He talked on the intercom as he flew, but I watched him like a hawk.
As a student, my zoom flight would be the high point of the 12-month course and my last flight. I’d take the F-104 (not the rocket-powered NF but a standard -104) to the rarefied atmosphere above 80,000 feet.

On the day of the flight, I was sweating profusely, having spent an hour and a half in a full pressure suit. Wearing the helmet and faceplate was like looking at the world from inside a fishbowl. And the helmet was almost as wide as the canopy. I could move my head only a few inches from side to side before the helmet bumped against the plexiglass.

As I sat cooking in the Mojave Desert sun, I felt confident. I’d logged thousands of hours in Air Force fighters, from the F-86 Sabrejet to the F-101B Voodoo. But I’d never flown a Starfighter to 80,000 feet—“Angels 80,” military pilots call it. I’d flown the F-104 often in the previous months to get the feel of it. But you always have little doubts when you’re trying something that you’ve never done before.

If I overcorrected at the top of the zoom, I’d be uncontrollable in seconds. Lieutenant Patrick “Pat” Henry, a Navy pilot in the class just ahead of mine, lost control at the top of the zoom, entered a spin, and eventually ejected. If I were not precise in my planning and control, I’d share his fate. If the engine failed to restart as I was coming down, I’d be committed to a flameout pattern.
The tower’s call interrupted my thoughts. “Zoom 5, you’re cleared onto Runway 04 to hold.”
Sweat was dripping into my eyes, but it would be cool up where I was headed. A quick glance to my left confirmed that my chase aircraft, an F-104 with the call sign “Zoom Chase,” was in position and ready for takeoff. He’d chase me until the pull-up point and then, as I descended through about 30,000 feet, he’d rejoin in formation in order to accompany me through the traffic pattern. He’d check the airplane’s exterior, be ready to offer any assistance I might need, and help keep me clear of other airborne traffic, since I’d be focusing most of my attention on the instrument readings.

The J-79 gave its characteristic howl and roar as I eased the throttle full forward and back again to idle.

“Zoom 5, winds are calm, you’re cleared for takeoff,” the controller said.

No time for other thoughts now. I got a good afterburner light, then pushed the throttle up to maximum afterburner. The acceleration pressed me against my parachute. Control stick aft at 100 knots (115 mph), nose wheel raised at 150, airborne at 175. Landing gear up before 250 knots or I’d rip the gear doors off. Then flaps up. Passing 400 knots, I raised the nose slightly to start my climb and throttled back out of afterburner. Then I started a turn to the east and climbed at 450 knots, waiting for the Mach to build to 0.85.

Comment on this Story

comments powered by Disqus