Wrong Turns- page 3 | History | Air & Space Magazine
Current Issue
July 2014 magazine cover
Subscribe

Save 47% off the cover price!

Wrong Turns

When's the last time you caught a ride in an autogiro?

Air & Space Magazine | Subscribe

Flying Automobiles
Since The Man with the Golden Gun’s Scaramanga fled James Bond in a custom fastback-cum-airplane, villains everywhere have patiently awaited a production model. Unfortunately for them, manufacturers have been unable to sustain enthusiasm for the concept.

Convair, a major wartime manufacturer, crafted prototypes of its ConvAirCar in the late 1940s (one was reported to have circled San Diego for over an hour), but the effort ended after one of them crashed and another was lost in a fire.

Two models, Robert Fulton Jr.’s Airphibian and Moulton Taylor’s Aerocar, eventually won certification from the Civil Aeronautics Administration, the Federal Aviation Administration’s predecessor, but it was the public, not the government, that needed to be convinced. Taylor, dean of the so-called “roadable” airplane, came close to getting his craft into production in 1961, after it had been featured in a popular 1950s TV show starring Bob Cummings. The firm of Ling-Temco-Vought promised to build 1,000 Aerocars if Taylor could persuade 500 enthusiasts to each plunk down $1,000. He rounded up little more than half that number, and the venture died.

Fulton’s Airphibian also hit a dead end; after 200,000 miles of driving and 6,000 successful flights, it lost its financial backers. They pulled out of Fulton’s company, Continental, Incorporated, and took with them eight production Airphibians meant for CAA inspectors.

Little has been done in the past 40 years to resurrect the always-intriguing concept. The reason: A winged car is too heavy to be a good airplane.

Convertiplanes
During the heyday of the autogiro in the early ’30s, Gerald Herrick invented an aircraft that fused elements found in autogiros with those found in conventional airplanes. The Vertaplane employed a two-blade rotor: It could be left to spin freely in order to dramatically shorten takeoff rolls, or it could be locked into place before takeoff to form a second wing. Fixed as an additional wing, the rotor effectively converted the aircraft to a biplane, which was faster than an autogiro. Once in flight, the rotor could be unlocked to allow the aircraft to land vertically (the rotor could not be stopped and locked in mid-air).

Initial flight tests were promising, but the aircraft suffered from excessive drag and was too underpowered to lift more than a single pilot and a small amount of fuel. When a lack of funding ended further research and development, Herrick’s aeronautical oddball was put out of its misery.

Convertiplanes reappeared during the l950s, this time as hybrids trying to combine the speed of fixed-wing aircraft and the vertical capabilities of rotary wings. The McDonnell XV-l of l954 took the shape of a helicopter with wings, using a single engine to drive both the rotor and a pusher propeller. It topped speeds of 200 mph, but by 1957, when the Pentagon ended its development, it was clear that helicopters would soon be capable of such speeds. Three companies followed with new designs. The Hiller X-18 mounted engines on a tilting wing; the Curtiss Wright X-19 used tilting rotors. Both were flat failures. The Bell Textron V-22 has been flying for over a decade, but on the question of whether the tilt-rotor is a viable design, the jury’s still out.

Ramjet- andRocket-Powered Aircraft
Aviation entered World War II with a single practical powerplant, the reciprocating piston engine, and emerged with three new ones: the turbojet, ramjet, and rocket. All three promised speed, but only the fittest would survive.

During World War II, Germany developed a rocket-powered interceptor, the Messerschmitt Me 163. Radar systems of that era lacked the range to give enough warning for propellerdriven airplanes, which took precious time struggling up to the altitudes where bombers flew. The Me 163 was capable of an ultra-quick ascent (it could reach nearly 40,000 feet in just three and a half minutes), but it ran out of fuel only minutes after takeoff, had a tough time targeting much slower bombers, and was vulnerable during descent, when it was unpowered. The Luftwaffe chose to place its bets on turbojet Me 262 fighters instead.

Comment on this Story

comments powered by Disqus