Infrared Countermeasures | How Things Work | Air & Space Magazine
Current Issue
July 2014 magazine cover
Subscribe

Save 47% off the cover price!

Infrared Countermeasures

The systems that cool the threat from heat-seeking missiles

Air & Space Magazine | Subscribe

ON NOVEMBER 28, 2002, JUST MOMENTS AFTER TAKEOFF FROM MOMBASA, KENYA, Israeli vacationers felt their chartered Arkia Airlines Boeing 757 shudder as it flew through the wakes of two Soviet-designed SA-7 missiles that were meant to bring it down. Passengers hardly noticed the bump, but as the cockpit crew watched the white contrails arc away, they instantly grasped the situation.

For five hours the crew said nothing. Only when the flight was minutes from Tel Aviv were the passengers informed that terrorists had fired on the aircraft from an area around Moi International Airport. The relieved passengers broke into celebration, but the press began to wonder how two SAMs could miss such a large, slow target.

One theory is that poorly trained gunmen fired the shoulder-launched missiles from the wrong distance or at the wrong angle. It’s possible that the two heat-seekers may have locked on to a glint of sunlight or a wing’s edge that was too thin to hit, and there’s a good chance that their decades-old batteries were nearly dead. But there may have been other factors at work that affected the two missiles.

A few secretive Arkia, U.S., and Israeli officials know whether the airliner carried infrared countermeasures. (One passenger’s report of a small explosion near the wing suggests that the 757 may have dispensed flares as decoys.) Arkia, the Federal Aviation Administration, other airlines, and aircraft manufacturers don’t encourage discussion of current or planned safeguards against shoulder-fired man-portable air defense systems (manpads) like the SA series and the U.S.-made Stinger.

Congress recently began working on legislation to explore the best anti-missile measures and equip the U.S. jetliner fleet. Recently the Transportation Security Administration began surveying major airports to assess the risk at each. Some airports have expanded their boundary patrolling areas. But what if, despite preventive measures, a missile is launched?

Flares are one effective and simple way to deflect heat-seeking missiles, but military fleets rely far more on infrared jamming systems. Safer over populated areas than burning flares and perhaps a bit more effective, jamming devices deflect manpads by exploiting the way that the missiles track their targets.

To lock on to a target, a manpad gunner must physically point the system at an aircraft as the missile’s seeker passively searches for the most powerful source of infrared radiation in its limited view—usually a heat source such as a jet exhaust nozzle or heat plume. “Since their primary job is to stay locked on,” says Darrell Lamm, chief of Georgia Tech Research Institute’s Threat Analysis and Countermeasures Branch, heat seekers’ fields of view “are usually small to prevent distraction from competing sources.”

“We usually use the simile of looking through a soda straw,” says Jack Pledger, Northrop Grumman’s infrared countermeasures marketing director.

Seeker optics magnify infrared signatures emitted by distant aircraft; keeping track of the target is another matter altogether. The SA-7 and knockoffs of it use simple spin scanners, but the Stinger and more recent designs use conical scanning systems.

In con-scan arrangements, portions of light collected by a Cassegrainian primary mirror are reflected by a secondary mirror through a chopper reticle and onto an infrared detector . The secondary mirror swivels about the missile’s roll axis (manpad missiles, like bullets, spin in flight for stability) and must make a full revolution for the detector to be exposed to the seeker’s entire view of the sky. After infrared energy is focused by the secondary mirror, it passes through the chopper reticle, a disc with a rotor-like paint scheme—opaque blades alternate with transparent slots. The reticle chops the infrared energy into a series of “ons” and “offs” that help determine pointing error—the difference between the missile’s current trajectory and an intercept course.

Comment on this Story

comments powered by Disqus