Tilters | Military Aviation | Air & Space Magazine
Current Issue
September 2014 magazine cover
Subscribe

Save 47% off the cover price!

Tilters

You might say that Osprey pilots are neither fish nor fowl.

Air & Space Magazine | Subscribe

Like the sky-struck Zack Mayo in the 1982 film An Officer and a Gentleman, Brian Smith joined the U.S. military for only one reason: to get jets.

From This Story

Unlike Mayo, however, hovering in Smith's subconscious was an attraction to a radically different flying machine, one he had admired from afar since his days at Wilmington College in Delaware in the early 1990s. What Smith saw in the distance was the New Castle County Airport, where an aerial commotion was under way: Partners Boeing and Bell Helicopter were putting their newfangled vectored-thrust flying machine through its paces. "I'd never seen anything like it," recalls Smith of the V-22 Osprey tiltrotor. "It was like something from outer space."

Smith is one of a new category of Marine pilots who will fly and fight with the $69.5 million MV-22 Osprey—in his case, with Marine Medium Tiltrotor Squadron 162 (VMM-162 in naval aviation shorthand). The service has replaced its trusty CH-46E medium-lift tandem-rotor helicopters, predecessors of the Boeing Chinook, with the MV-22, the Marine version of the Bell-Boeing Osprey. The Marines ultimately plan to buy 360 Ospreys for their 18 medium-lift squadrons; the Air Force wants to buy 50 of its own version, and the Navy, perhaps 48. Carrying troops for assault missions is the primary job of a medium-lift squadron, followed by moving supplies and equipment.

Though there's a long list of V-22 skeptics, given the unusual aircraft's growing pains since first flight in 1989—a crash in 1992 and two in 2000 claimed a total of 30 lives—pilots like Smith believe it's only a matter of time before converts are made. The tipping point is often the first flight: "I was absolutely amazed," recalls Marine Major John Wesley Spaid of his first flight in the Osprey. Spaid had previously flown tandem-rotor CH-46Es. "The performance was probably the most shocking for me. I was used to 120 knots at 500 feet for the CH-46E. With the Osprey, it's double the airspeed and tenfold the altitude on every flight."

Last January, Spaid's squadron, VMM-263, was finishing the last of three training stages in preparation for deployment to Iraq this month, a move that will mark the first test of an Osprey in a war zone. The first stage was the squadron "standup," which included initial training of 24 pilots to fly 12 aircraft, followed by a "maturation" phase, in which pilots learned to work with ground troops and other Marine aviation and logistics groups.

The Osprey's pizzazz is the culmination of more than five decades of work by NASA, the military, Bell, Boeing, and other U.S. organizations that had been experimenting with the idea of an airplane-helicopter hybrid. The first serious contender was the Bell XV-3, which flew for 125 hours starting in 1958. Then came the XV-15, first flown in 1977. Bell ultimately built two copies of the XV-15, and NASA and the U.S. Army accumulated 530 flight hours and demonstrated it to more than 300 pilots.

The idea was simple in concept: Combine the virtues of fixed-wing and rotary-wing aircraft by mechanizing the twin outboard engines of a medium-size airplane to swivel between the horizontal configuration, called airplane mode, and the vertical orientation—helicopter mode.

The Marines were impressed enough to fund 85 percent of the Bell-Boeing contract to produce a prototype (the Air Force funded the rest). Problems with early Osprey models—software bugs, wire chafing, and "vortex ring state," a loss of lift occurring when rotary-wing aircraft settle into their own downwash—were corrected or adjusted for, and a new Osprey model, called the Block A series, was delivered to the Marine Corps in 2005 to begin training pilots, air crew, and maintainers. The Marines set up the VMMT-204 tiltrotor training squadron at Marine Corps Air Station New River in Jacksonville, North Carolina, to give incoming pilots 50 hours of simulator and 50 hours of flight time in the MV-22 before they headed into the operational squadrons. The squadron teaches basic tactics and formation flight, the first of six levels of Marine pilot training (levels 100 through 600). Deliveries of combat-ready Block B Ospreys began in December 2005. Block Bs included a retractable refueling probe, ice buildup protection, a ramp-mounted machine gun, and other improvements.

Smith was largely oblivious to most of the Osprey turmoil in those early years—he had jets to think about. He soloed at age 16 in his dad's 1958 Cessna 172 Skyhawk. After graduating from Wilmington College, Smith did what all future Marine pilots do—he went off for 10 weeks of officer candidate school followed by six months of basic school. He survived the indoctrination and moved on to flight school in Corpus Christi, Texas, flying the Beech T-34C Mentor. Then he was offered a choice: flying the C-130 Hercules transport, helicopters, or jets (the F/A-18 Hornet, AV-8B Harrier, or EA-6B Prowler). No reason to dither: Smith was a jet guy from Day One.

The jet route took Smith to intermediate flight training in Meridian, Mississippi, in 1996, during which he flew the T-2C Buckeye, then on to advanced training and his pilot wings with the TA-4 Skyhawk. Soon after, Smith was assigned to fly F/A-18s with a squadron in Beaufort, South Carolina. Then Smith went to Expeditionary Warfare School with the Marines in Quantico, Virginia, where he and his classmates had to choose a research project. He selected the V-22. "I was promoting it for the assault support mission, as the future of Marine aviation," he says. As part of his research, his group traveled to the Patuxent River Naval Air Station in Maryland, where Marines were testing the new and improved Block A MV-22s after the crashes of 2000. He "flew" a tiltrotor full-motion simulator and, despite having no helicopter experience, flew it well. He was hooked.

Comment on this Story

comments powered by Disqus