H.M.S. Moon Rocket

In the 1930s, Arthur C. Clarke and friends designed their own lunar mission.

Arthur C. Clarke (far right) and other members of the British Interplanetary Society had a visit from rocket pioneer Robert Truax (holding the rocket model) in 1938. (National Air and Space Museum)
Air & Space Magazine | Subscribe

In the summer of 1939, the members of the British Interplanetary Society may have been the only optimists left in Europe. Nazi Germany was steadily building up its military machine, and the continent appeared to be slipping inexorably toward another devastating conflict.

From This Story

But the small band of English eccentrics that made up the BIS had their attention elsewhere. Their gaze was fixed on the coming age of space travel, and more specifically on the problem of sending a rocket to the moon. They had formed their organization in 1933—at about the time rocket societies were blooming in Germany, Russia, and the United States—dedicating themselves to “the stimulation of public interest in the possibility of interplanetary travel…and the conducting of practical research in connection with such problems.”

In fact science fiction writers like Edgar Rice Burroughs and H.G. Wells had already stimulated the British interest in space. But even though the BIS members were almost all science fiction fans, they cringed at the way space travel was portrayed in movies and popular books. Writing in the February 1937 issue of the society’s journal, D.W.F. Mayer, an associate member from Leeds, panned the film version of Wells’ Things to Come for having depicted astronauts being launched by a space gun. After calculating that the resulting force on a 120-pound person would equal 435 tons, he chided, “If the Man in the Street is to be introduced to the possibility of space travel via the medium of films—especially films with as much publicity as was given to Things to Come—it is up to the writers of them to make sure their facts are reasonably accurate…. Play the game, Mr. Wells!”

From 1937 to 1939, about a dozen armchair astronauts on the BIS “Technical Committee” played the game by carrying out the first detailed study of a manned lunar mission, from propulsion to payload to pressure suits. Rather than dream up an anti-gravity drive or some other staple of science fiction, they used only physical principles and technologies already in hand. Some of the ideas, like a propulsion system based on 2,000 solid rocket motors, would certainly not have worked, while others—aerobraking and a parachute descent to Earth, a three-man crew, and a focus on geological prospecting once the moon had been attained—proved amazingly prescient.

The BIS was not the first to consider the technical requirements of a lunar voyage. Rocket pioneers like Russian school teacher Konstantin Tsiolkovsky and German engineer Hermann Oberth had already done some thinking on the subject. The American rocket scientist Robert Goddard had been ridiculed in 1919 for suggesting that a rocket could be sent to the far side of the moon. But BIS members were the first to analyze a lunar trip in a systematic way and spell out possible technical, logistical, and physical challenges.

In 1937, having just moved its operations from Liverpool to London, the four-year-old society was looking for a project that would popularize the notion of interplanetary travel and at the same time “prove that we are a body which may be entrusted with a scientific task,” in the words of one BIS officer. They bypassed more conservative ideas, like building a rocket car or firing mail across the Atlantic, electing instead to design a two-week round trip to the lunar surface.

The choice of such an ambitious goal wasn’t entirely high-minded. Unlike their counterparts in the United States and Germany, BIS members were forbidden by Britain’s Explosives Act of 1875 from shooting off real rockets. Hands-on experimentation with live propellants was out.

The society was also broke. Its members were mostly teenagers and young men, and few had money for expensive equipment. “The research fund remains at microscopic proportions,” lamented one author in the society’s journal.

So a careful, detailed, and cheap design study seemed just the ticket. A committee made of the few members who had at least some engineering or science background began meeting one evening a week, usually in someone’s flat, to sketch out plans. Heading the Technical Committee was J. Happian (Jack) Edwards, the director of a small electronics firm. A brilliant but irascible Welshman, Edwards didn’t suffer fools gladly. “There are plenty of mad scientists, but Edwards is the only mad engineer I ever knew,” says science fiction writer Arthur C. Clarke, who was also a member of the committee.

The 20-year-old Clarke was the group’s astronomer. As a teenager on his family’s farm in Somerset he had filled sketchbooks with drawings of lunar craters seen through a homemade telescope, and by 1938 he claimed to own every science fiction magazine ever published. Even before achieving world fame for co-authoring 2001: A Space Odyssey and predicting the invention of the communications satellite, his friends had nicknamed him Ego.

The team included another electrical engineer, Harold Ross, and Viennese chemist Arthur Janser. Perhaps the most important member after Edwards was his childhood friend R.A. (Ralph) Smith. An artist and self-taught engineer, Smith was, like Edwards, a bit older than the rest of the BIS members, and married. His daytime job was designing the interiors of London hotels and cinemas, but he had drawn his first rocket ship at age 12, and spaceflight was his true passion. A stickler for accuracy, his paintings brought to life many of the society’s most important concepts from its earliest days until his death in the 1950s.

Smith’s son Ashtyn, who later moved to the States and worked on the Apollo program, remembers watching through the banister as a seven-year-old while the Technical Committee discussed “propellants and mass ratios and such” in his parents’ living room. “They were the most unusual bunch of people you could expect to run across,” he says. “Real visionaries.” Clarke recalls that interspersed with the technical conversation was “quite a bit of fun,” and that the group was never averse to sending out for fish and chips or adjourning to a pub.

 Cash-strapped as it was, the committee decided nonetheless to try to build whatever few devices its meager experimental fund would allow. “We were in the position of someone who couldn’t afford a car, but had enough for the speedometer and the rear view mirror,” Clarke later wrote.

Edwards designed an inertial guidance system—an aluminum disk with ball bearings, gears, weights, and springs attached—for sensing the spaceship’s speed and position. The committee planned to test the device in the London underground but never got around to it. Another instrument—the coelostat—did get built, and actually worked. Because the spaceship would be spinning at one rotation every three and a half seconds, the astronauts would have difficulty seeing out the portholes to navigate. The solution was the coelostat, a periscope-like gizmo with two fixed mirrors and two spinning ones, which compensated for the ship’s motion so the stars appeared stationary.  

During one memorable meeting in Smith’s suburban London home, Edwards orchestrated a demonstration of how the coelostat would work in principle, using, among other things, Smith’s shaving mirror and his wife’s compact. “Soon,” wrote a wry observer in the BIS bulletin, “the room was full of living statuary, standing in graceful and artistic poses, holding mirrors above their heads.” When “fatigue began to overtake the living statues, wobble set in,” and Mrs. Smith had to rescue the “stricken Interplanetarians” with a tray of tea and sandwiches.

By January 1939 the committee was ready to show off its design in the more sober pages of the society’s journal. The six-stage moon rocket weighed in at 1,000 tons and could deliver a one-ton payload, including three astronauts, to the lunar surface. Each stage, or “step,” was a honeycomb of hundreds of tubular solid rocket motors—2,250 altogether—bundled together like sticks of dynamite. The sixth and final step would lift the vehicle off the lunar surface for the return to Earth. This “cellular” design—Edwards’ idea—allowed the motors to be mass produced, which dramatically reduced the cost of the mission.

It was all very elegant. And totally impractical.

Comment on this Story

comments powered by Disqus