H.M.S. Moon Rocket

In the 1930s, Arthur C. Clarke and friends designed their own lunar mission.

Arthur C. Clarke (far right) and other members of the British Interplanetary Society had a visit from rocket pioneer Robert Truax (holding the rocket model) in 1938. (National Air and Space Museum)
Air & Space Magazine | Subscribe

(Continued from page 2)

Foods would be selected for high energy content: bread and butter, cheese, porridge, raisins, ham, honey, and salmon. Water would be the basis of all beverages, “chief amongst which will be cocoa, though a small amount of coffee might be necessary as a stimulant for navigators falling asleep over their interminable calculations.”

The astronauts would communicate with Earth via “flashes of light.” By modulating the intensity of the beam, wrote Hanson, “a running commentary by one of the astronauts on the exploration of the Moon, broadcast by the BBC, is not beyond the bounds of possibility.”

Some of this was a little farfetched for even the other committee members, who had their hands full figuring out how to soften the spacecraft’s impact on the moon, or just getting the damn coelostat to work properly. Time, money, and lack of manpower were chronic problems. A few members began to wonder whether the original prediction—that a mission could be launched in 15 years (always pending the timely arrival of £ 200,000, of course)—might have been a trifle too bold.  

If the members were beginning to have doubts, outsiders already thought they were crazy. Leonard Carter, who joined the society in 1937 and still works in its London office, says that talking about moon travel before World War II “was regarded as a form of lunacy, and not a mild one at that. People would cross the road to avoid us.”

The BIS membership set out to convince skeptics that their mission was possible. “We must explain that we are not peculiar people who desire to go to the moon like children who cry for a new toy,” wrote President A.M. Low, who had helped develop radio-controlled guided missiles in World War I.

Society members gave frequent lectures and demonstrations, even showing off the coelostat at a science museum in Kensington. Clarke did his part to spread the faith, even though he was often rebuked by someone in the audience “for talking utter nonsense.” After the war, he and fellow member Val Cleaver spent an evening in an Oxford pub trying to convince C.S. Lewis and J.R.R. Tolkien of the rightness of their cause. Neither writer joined the society, though eventually George Bernard Shaw did, at the age of 91.

The BIS moonship design generated a small flurry of publicity for the society in 1939, with articles appearing in Time magazine and publications from as far away as India. An editorial in the journal boasted that “once we stole half the photo-news page of a national Sunday newspaper from Herr Hitler.”

But Hitler had the last laugh. In September 1939 he invaded Poland, Britain declared war on Germany, and the society disbanded virtually overnight, as those members who hadn’t already enlisted were called up to service. When the BIS reconvened after the war (R.A. Smith was instrumental in rounding up former members), its ranks were older, more seasoned, and more numerous. Wernher von Braun’s V-2 had proven that rockets were no longer schoolboy fantasies, and now no one smiled at the idea of space travel.

The post-war BIS turned to more practical near-term tasks, including holding a landmark conference in 1951 to plan the world’s first orbiting satellite. The society became, and remains today, an important incubator for advanced thinking about space technology, and its journal is one of the most respected in the field.

A few members of the original Technical Committee, mainly Smith and Ross, continued tinkering with the old moonship, publishing articles into the 1950s that refined the design. The postwar concepts were more sophisticated, at times coming close to what NASA actually launched a decade later.  

Comment on this Story

comments powered by Disqus