Current Issue
May 2014 magazine cover

Save 47% off the cover price!

Draper Lab team members Bobby Cohanim (in black shirt) and Eph Lanford check fittings and connections on TALARIS before running a test. (Courtesy Draper)

Leaping Lunar Landers!

Can a spacecraft hop its way to winning the Google Lunar X prize?

The announcement of the Google Lunar X Prize in 2007 freshened Joyce’s passion for spaceflight, and his experience with the robots pointed the way toward a serious bid to win. Now adept at finding component suppliers and putting the parts together, he thought he could manage the project of building a moon-roving robot, although he didn’t know exactly what form the machine would take. “I knew I needed some team members, obviously,” says Joyce. “I knew I wasn’t a rocket scientist.”

Early in his search, Joyce found MicroSat, a Colorado company located within a day’s drive from his house. MicroSat formed the nucleus of Joyce’s technical team, particularly an engineer named Todd Mosher. In December 2008, Joyce and his new collaborators announced their intention to compete for the Google Lunar X Prize.

In discussions, Joyce and Mosher considered the concept of a hopping rover. Mosher was already friends with MIT’s Hoffman, who was independently developing the hopper idea with his students. (Hoffman says the idea grew out of class discussions and papers, and that he can’t credit any one innovator.) It was an easy sell for Mosher to bring Hoffman and his students into the project, and through them the closely affiliated Draper Laboratory.

With the 2009 purchase of MicroSat by Sierra Nevada Corporation, a rising star in spacecraft, satellite, and rocket development, Next Giant Leap gained an important new ally. Sierra Nevada’s most ambitious project is a seven-seat lifting-body spaceship known as Dream Chaser. In 2011, NASA, which is seeking replacements for its retired space shuttle fleet, gave Sierra Nevada $80 million to develop Dream Chaser as a reusable transport for missions to low Earth orbit. Mosher now oversees the program.

Joyce and Mosher plan to build their moon-hopping spacecraft around Sierra Nevada’s new standardized satellite bus, developed for the satellite communications company ORBCOMM. Eighteen of the satellites are under construction at Sierra Nevada’s factory in Louisville, Colorado; they are all bound for low Earth orbit as tracking and data communications relays for the shipping industry. If Joyce and his crew of experts are successful, one additional satellite will go much farther.

But first Joyce, like all of the X Prize competitors, will have to raise tens of millions of dollars, much of it from investors who will expect to see a return on their investment. In other words, Joyce will have to support his lunar aspirations by establishing a sustainable business.

Fostering the commercial development of space is one of the goals of the Google Lunar X Prize. Like the original Ansari X Prize, it was created by Peter Diamandis, another would-be astronaut. Diamandis identified the cost of getting to space as the single biggest impediment to getting people like himself into the final frontier. And he believed that if the cost of getting there could be lowered, space exploration could bring financial reward. “Everything that we hold of value on this planet—metals, minerals, real estate, and energy—are in infinite quantities in space,” he’s fond of pointing out. “The Earth is a crumb in a supermarket filled with resources.”

Fellow space enthusiast and Google co-founder Sergey Brin got Google to commit the all-important prize money, a total of $30 million. To win the $20 million first prize, the first team to land a robot on the moon has to send high-definition video back to Earth, along with social media posts, and travel at least 500 meters (about a third of a mile). A second place winner accomplishing the same tasks gets $5 million. The prize must be claimed before the end of 2015, and the top-prize purse drops to $15 million if a government-sponsored lander arrives on the moon first.

Bonuses for photographing human-made artifacts already on the moon, finding water ice, surviving the two-week lunar night, and traveling more than five kilometers (3.1 miles) constitute the remaining prize money. There’s also a bonus for the team that has the most diversity among its members (the rules say “diversity of nationality, gender, ethnicity, and other factors may be considered”). No team may accept more than 10 percent of its funding from government sources: This 21st century moon race is dominated by commercial enterprises and nonprofits. The idea is to generate self-sustaining business ventures that will continue to explore space more affordably than ever before, even after the prize is won.

Next Giant Leap is one of 28 U.S. and international teams competing for the prize. A team that seems particularly well suited to the challenge is Astrobotic, based at Carnegie Mellon University in Pittsburgh and led by robotics pioneer and professor William “Red” Whittaker, along with entrepreneur David Gump (see “Red and the Robots,” Dec. 2008/Jan. 2009). The Whittaker-led Tartan Racing team won first place in the 2007 Urban Challenge robot car race, sponsored by the Defense Advanced Research Projects Agency. Whittaker plays to win, pushing his students and the handful of employees of the specially formed Astrobotic Technologies hard. Already the team has built a solar-powered rover prototype that, driven by remote control with commands delayed to simulate communications between Earth and the moon, has demonstrated traverses of well over the 500-meter minimum. Astrobotic was also the first team to put down a deposit on a launch vehicle, a SpaceX Falcon 9 rocket.

Comment on this Story

comments powered by Disqus