Current Issue
May 2014 magazine cover
Subscribe

Save 47% off the cover price!

X-Ray Eyes

The Chandra X-Ray Observatory opens the book on the high-energy universe.

Chandra, the product of a collaboration between NASA, the Harvard/Smithsonian Astrophysical Observatory, MIT, Pennsylvania State University, the aerospace company TRW, and a number of other academic, industrial, and commercial partners, has already been used to make many advances, including confirmation that widespread X-rays detected across the entire sky emanate from the collective emissions of single sources like the energetic, black-hole-fueled cores of galaxies, as well as other active galactic regions, such as stellar nurseries in star clusters. It has also given scientists increasingly detailed views of the environments of black holes; enabled the identification of early stages of star formation; and provided the composition of the extremely hot gases expelled during supernova explosions and from the outer layers of stellar atmospheres.

Chandra's journey into space began in 1976, when Harvey Tananbaum, now director of the Chandra X-ray Center, Giacconi, and seven colleagues submitted a proposal to NASA to build a space observatory capable of collecting and analyzing X-ray emissions from distant sources. Given a budge of $2 billion (slimmed down from $6 billion), with annual operating costs of $50 to $60 million, the researchers created an 11,000-pound spacecraft some 46 feet long and, including its solar panels, 65 feet wide. Because Chandra is designed to receive and analyze astronomical X-rays, its interior differs from that of an optical telescope. If X-rays were to hit a mirror head on, they would pass straight through. So Chandra's are cylindrical, angled so that X-rays graze off, are captured, and then are funneled to the observatory's instruments for processing.

One key mystery that analysis of the resulting images may ultimately reveal is the mechanism underlying massive gamma-ray bursts that emanate six to ten billion light-years away from Earth. The orbiting Compton Gamma Ray Observatory studied the phenomena, but scientists are still puzzling over them and hope that examining the bursts in X-ray wavelengths will offer additional insight. Could these occurrences represent two neutron stars colliding and coalescing? Perhaps they're super-supernovas—"hypernovas," as some have called them, the results of the detonation in the early universe of unstable, ultramassive stars 500 to 1,000 times larger than our sun. Or maybe they're an entirely different class of objects to which a name may some day be attached.

No doubt, say scientists, there are other astronomical conundrums that should yield in time to Chandra's observations. "Astronomy involves a lot of different types of physics and chemistry, but you can't just go into the laboratory to validate your theory," says Leon Va Speybroeck, a contributor to the original 1976 study proposing Chandra and today a telescope scientist with the Harvard/Smithsonian Astrophysical Observatory. "Understanding evolves over time. Someone can't do a single experiment and suddenly settle all questions."

Success has bred huge amounts of data, which is stored in two archives in Cambridge and one just south of Boston, where tape backups are transferred and placed in a guarded vault. Each shift, Chandra generates slightly more than 112 megabytes of data: that's 123 gigabytes per year. Astrophysicists are only now beginning to mine that enormous collection, a task that likely will take years. Although Chandra's operational life is officially five years, most of those affiliated with the project believe its instruments could last 15.

Many questions and answers are likely to be forthcoming as researchers schedule approximately 800 observing sessions each year. Objects under scrutiny will range from stars to gas clouds to nebulae in the Milky Way and beyond, as well as neighboring and distant galaxies. Observers want to answer basic questions: How do celestial objects form, mature, and perish? What is their nature? How do they behave? What in their basic form and function reveals the inner workings of the universe?

In the end, Chandra's deep view of the universe is no arcane scientific exercise but an exploration that brings a practical understanding home to Earthly doorsteps. Since its formation, the planet has been bombarded by extraterrestrial material. Among the arrivals have been the very elements today found in the crust and mantle, including those we rely on every day. According to Jeffrey Linsky, an astrophysicist at the University of Colorado who has used the telescope, "Your computer wouldn't work without supernovas. There's where the silicon comes from," he says. "The iron in our blood is from supernova." Indeed, humankind owes its very existence to stellar eruptions that give off material that drifts through the void, enriching the stellar medium and seeding planets, perhaps even life itself.

 


A Luminous Mind

Comment on this Story

comments powered by Disqus