How to discover asteroids in your spare time

Roy Tucker has the answer.

Roy Tucker prepares for nightfall with one of several backyard telescopes, a 14-inch Celestron. (Courtesy Roy Tucker)
Air & Space Magazine | Subscribe

(Continued from page 2)

Working as I do, in a support position for professional astronomy, one thing I realize is that professional astronomers spend a lot of their time sitting in an office. They don’t often get to a telescope. They have to apply months in advance for telescope time. They might get a few nights, and if they get bad weather it’s a wipeout. Whereas an amateur, the telescope may be in their back yard and they can get out there and observe every clear night, which is pretty much what I do. And it’s just a matter of time before nature looks kindly upon the person who is spending the time, and a discovery will present itself. It’s a numbers game to a large extent.

A&S: How did you become interested in astronomy, and particularly in asteroids?

Tucker: As far as becoming interested in astronomy, that was about when I was 15 or 14, in 1966. I was still in high school, and I picked up an astronomy book in the library, and read about something called the Zodiacal Light, which can be seen as a false twilight, the light reflected from tiny dust particles in orbit around the sun along the ecliptic. And I thought, Oh, that’s interesting, I’ll get up in the morning and see if I can find it. Well, I didn’t actually see it, but I got up in the morning, and it was the first time I had arisen so early, and the morning time is so different than the evening. In the evening there are lots of people noises, there’s all sorts of activity and such, but in the morning, it was so quiet, it was like I had the whole world to myself. And the sky was clear and quite spectacular, and I was so taken with it, that I decided to get up every morning at 4 o’clock just to watch the sun come up and look at the sky.  And it was only a few months later, 1966 in November, that I happened to get up one morning and went out to look at the sky, and was greeted by the great Leonid meteor storm of 1966. And I didn’t realize at that time that I was seeing a once-in-a-lifetime thing. I thought, Oh! So that’s a meteor shower! Never realizing that I would never see anything that spectacular again in my life, most likely. I saw the Leonids back in 1999 and 2000, and they put on a good show, but it was nothing like what I saw in 1966. So that basically captivated my interest for the rest of my life.

How did I get into asteroids? Meeting the right people. When I joined the Air Force in 1972, I had an interest in astronomy, and I had just recently purchased a Government Printing Office book about asteroids, and I took that with me to Thailand, something to read, astronomical, in my spare time while I was there.

I read a lot of the articles, there not being a lot else to do in Thailand except go to work, and read about astronomy! So I read a lot of the articles about asteroids. And then a few years later, when I was a graduate student in Santa Barbara, in California, at UC Santa Barbara, I met Dr. Alan Harris, who is a well-known asteroid astronomer who worked at JPL—sort of like a sabbatical sort of thing, he was teaching at the university, and I was his lab assistant. And we collaborated on—I was tinkering together some photometric equipment, and he realized that this was exactly the sort of thing that would be necessary for observing an occultation. (An occultation is where an asteroid passes in front of a star, causing the star to blink out for a time.)

And he helped me participate in an effort involving many observers scattered across Southern California to observe an occultation of the star by, I think, Juno, I recall, December 11, 1979. And it was a successful event. I recorded the reduction in light due to the passage of the asteroid in front of the star, and provided the timing of the event, and that permitted him, along with the observations of the other people, to make a precise determination of the actual size of this asteroid. Back in those days, that was about the only way you could actually directly measure the size of an asteroid. So that was quite exciting.

Later, before I finished graduate school, I came to Tucson, Arizona, as a summer student in 1979, and I met David Tholen, who was a graduate student in planetary sciences at the time, and we got to talking about asteroids quite a bit. And then later, when I finished graduate school, I came back to Tucson to work at the multiple-mirror telescope observatory. I have to explain that I met David Tholen because his roommate was from Venezuela and went back home for the summer, and so he needed a temporary apartment roommate to help pay the rent while his regular roommate was in Venezuela, I was the summer replacement, you might say.

Later, when I finished graduate school, I came back to work at the multiple-mirror telescope observatory, his roommate moved out, and so I moved in, and it was like we picked up where we left off, talking about asteroids and stuff. And I’ve maintained this friendship with David over the years. In 1996, when I set up my backyard observatory, he encouraged me to start participating in measurements of positions of asteroids. And that’s what led to all the other things that I’ve been doing with asteroids over the past 14 years.

A&S: What did you do in the Air Force?

Tucker: I was an electronic warfare systems specialist, basically advanced electronics that prevent the aircraft from being shot down by missiles and anti-aircraft artillery. The experience in the Air Force was excellent, because the nature of electronic warfare involves the most leading-edge electronics. Absolutely state-of-the-art, the latest technologies, and I encountered a lot of experience with microwave-type techniques, digital processing and such, so that was a wonderful experience that helped set the stage for my later Master’s degree in scientific instrumentation. I took, essentially, my interest in astronomy, and my experience and professional expertise in electronics, and combined it to become an instrumentation engineer supporting astronomy.

Comment on this Story

comments powered by Disqus