The B-52 that launched a thousand ships.

Air & Space Magazine

On the ramp at California’s Edwards Air Force Base, the ancient B-52B, tail number 008, squats, its eight J57 Pratt & Whitney turbojets throbbing in their slim nacelles in preparation for its first flight of the millennium. From the outside, NASA’s oldest airplane looks tired. Primer peeks through patchy paint. A notch has been bitten out of the right flap. The billboard-size fuselage is stenciled with faded silhouettes of the hundreds of aircraft and other objects air-launched from its wing over the past four decades. But it’s inside the cockpit that the airplane really shows its age.

Here, NASA research test pilots Gordon Fullerton and Frank Batteas confront dozens of antiquated analog gauges and clunky mechanical contrivances that date from the days when cars sported tailfins, computers ran on punch cards, and the only creature with any immediate prospect of going to the moon was Alice Kramden. “It’s pretty awful from a human-factors standpoint,” Fullerton, a former astronaut with two space shuttle missions in his log, says cheerfully. “Everything in here is somewhat obsolete. After a couple of hours of flying, you really feel like you’ve earned your pay.”

This particular B-52, which answers to zero-zero-eight, double-oh-eight, and balls-eight, is the mother of all motherships. Starting in 1960, it ferried the X-15 under its wing for air launches that would send the rocket plane into space. Later this year, it will do piggyback duty for the X-43/Pegasus, also known as Hyper-X, a NASA research craft designed to test scramjet engines originally envisioned for the X-15. During the intervening 41 years, 008 has played a critical role in 13 major programs. The wrinkled fuselage bears the icons of five lifting-body aircraft (M2-F2, M2-F3, HL-10, X-24A, and X-24B), horses (Pegasus, which powered the first air launch of a satellite), parafoils (the X-38 vehicle for returning space station crews), parachutes (F-111 crew escape module), and even an Alfalfa Impact Study (marking the crash site of a drone in an alfalfa field). There’s also an icon connoting the Dumpster Impact Study, a spot on the aircraft that had to be patched after a wind gust blew an errant dumpster into the fuselage.

Nothing special is scheduled for this crisp January morning, just a few touch-and-gos to keep the pilots current and a quick test flight to check some recently completed repairs. On the ground, crew chief Dan Bain shuts the hatch to the fuselage. In the cockpit, the light indicating that the hatch is open continues to shine. Bain tries again. And again. “We’ve still got a light,” Fullerton calls over the radio, no longer quite so cheerful. It seems preposterous that a machine as sophisticated as a B-52—it cost $8 million when it was built—could be grounded because a door won’t close.

“Dan’s going to get his wand,” says electrical technician Gary Beard, who’s inside the belly of the dark, surprisingly cramped beast, trying to help Bain lock the hatch. Magic wand notwithstanding, the locking bolts won’t engage properly, and there’s no thought of flying until the hatch is properly secured. “One time,” Beard recalls with a laugh, “the slight increase in cabin pressure when we started up the air conditioning system blew the hatch off on the ramp.”

My-kingdom-for-a-horse squawks are by no means unique to NASA, of course. But they’re a special problem for 008, which, for the past quarter-century, has remained operational only by virtue of a resourceful brand of scavenging, jury-rigging, and ingenuity. This is the nation’s last flyable B-52B. In fact, every other A, B, C, D, E, F, and G model B-52 has long since been dispatched to museums or boneyards. The Air Force still flies 94 H models, but these have virtually nothing in common with 008 other than the airframe.

“A lot of these parts just aren’t made anymore,” Bain says. He admits that he can’t remember where this particular hatch came from—possibly from the D model displayed in the Edwards museum. “Take the autopilot. It’s the last of its kind. Gary Beard was trained on it at Tinker Air Force Base in ’93 by the last guy who’d worked on it, and that guy was already an old man about to retire, and he hadn’t worked on it for 25 years.”

Zero-zero-eight manages the neat trick of being just about the oldest airplane in the Air Force inventory as well as the youngest—oldest because it’s been flying since 1955, youngest because it had amassed only 2,384.5 hours during 1,014 flights through 2000. The Air Force tried to retire it in 1975, and NASA, which has had it on loan at the nearby Dryden Flight Research Center ever since, has been trying to replace it for at least a decade. A B-52G was evaluated in 1994 but rejected. An H model is supposed to arrive later this year, but it may not meet all of NASA’s mission requirements. Meanwhile, 008 just keeps on going, and going, and going. “Every time we fly it, we continue to contribute to its history,” says B-52 project manager Roy Bryant, who first became acquainted with the airplane when he was working on the X-15.

The mothership concept isn’t unique to big, old bombers and Edwards Air Force Base. Parasite airplanes were fitted to larger aircraft and airships as far back as the 1920s, and NASA uses two modified Boeing 747s to ferry space shuttles from coast to coast. (The Soviets carried their Buran shuttle on an Antonov An-225.) But the modern air launch concept was hatched for the Bell X-1’s assault on the sound barrier in the late 1940s, and it was perfected on the desolate dry lakes of the Mojave Desert.

Because the rocket planes of the 1940s and ’50s had such limited fuel capacity, they were carried aloft by B-29s and B-50s and dropped from the bomb bays (see In the Museum, p. 14). But the X-15 was significantly larger and heavier than earlier rocket planes. A more substantial mothership was required, and the obvious choice was Boeing’s new B-52 Stratofortress. Designed to deliver nuclear weapons to every corner of the globe, the Buff—an acronym for Big Ugly Fat Fellow (or something like that)—would have no problem lifting a 50,000-pound payload.

Comment on this Story

comments powered by Disqus