The Next Little Thing

Why 2006 is the year of the very light jet.

Honda's in! As announcements go, this was a whopper. More than 15 years of development preceded Honda's decision, trumpeted at this year's Oshkosh, Wisconsin fly-in, to build the HondaJet. Most attentive listeners? Other jet builders. (American Honda Motor Co.)
Air & Space Magazine | Subscribe

(Continued from page 1)

Eclipse began looking for a replacement engine in late 2002, and by then, Pratt & Whitney Canada (PWC) was already far along on the development of its PW600 series of 900- to 1,700-pound thrust engines. In 2003, PWC announced its first order, from Cessna, for the 1,350-pound-thrust PW615F, weighing 300 pounds.

The new engines incorporate a host of proprietary technologies including unique fan blade shapes and a high-efficiency compressor, which produces a pressure ratio in two stages that other engines need three or more stages to achieve. PWC also invented a modular construction technique that enables the engine to be assembled faster and serviced easier. For both private pilots and jet taxi businesses, less expensive and faster engine servicing will be an important sales advantage. Modular construction and a new assembly facility in Longueuil, Quebec, helped the company slash the average engine’s production, test, and shipping time from eight days to a mere eight hours. The plant is gearing up to produce as many as 2,000 engines per year.

To date, PWC has contracts to supply engines for Cessna, Embraer, and Eclipse.

And then there’s Honda. GE Honda Aero Engines, located in Cincinnati, Ohio, was formed two years ago to improve Honda’s HF118. With 1,700 pounds of thrust, the little turbofan is competitive with the PWC and Williams engines, but so far the HF118 will power only the HondaJet.

The infusion of oddball ideas or unconventional practices may not produce immediate business success, but it can stir other businesses in an industry to innovate. In the case of VLJs and the aviation industry, the new ideas have come mainly from the computer business.

Several leaders of the very light jet revolution come from the computer or software industries and have brought with them some principles of software development that challenge the aviation industry’s evolutionary tradition. “In the high-tech business, the non-existence of a market and a product for it is viewed as an opportunity,” says Vern Raburn. “It’s like, ‘Cool, no competition.’ In aviation, the non-existence of a market or product is used to say it can’t exist or it shouldn’t exist. Remember the old Bob Dylan lyric, ‘One man’s ceiling is another man’s floor’? Well, that is how I could characterize aviation.”

Raburn’s biggest customer for the Eclipse 500 is Ed Iacobucci, who worked at IBM, then founded Citrix Systems, retired, moved to Florida, and invented DayJet, an air taxi company that depends on “complexity science” for scheduling. Developing the computer models to give customers the flexibility of a taxi service is an undertaking on the order of the manned moon missions, but with the help of the Georgia Institute of Technology and the Santa Fe Institute, Iacobucci has created the system that will make it work.

Raburn has suffered slings from market analysts, who have referred to Eclipse as a “ with wings,” but if he can hold his price—a new Eclipse ordered today would cost $1.6 million—he will be selling a five-seat, twin-engine jet for the same price pilots now pay for a single-engine turboprop with as many as 12 seats. The next-cheaper twin VLJ is Adam’s A700 (with seven seats instead of five), selling for $2.25 million. To hit his price point, Raburn believes he has to change how an airplane is made.

The surprise: After studying composite construction, he chose aluminum. “Composites can’t be scaled,” he says, to meet the company’s mass production model envisioned at 500 aircraft a year. That’s how many Eclipse 500s the company must build (and sell) in order to break even, according to Raburn.

“By the end of next year,” says company spokesman Andrew Broom, “we’ll be able to build three or four airplanes a day. That’s a thousand airplanes a year.”

Comment on this Story

comments powered by Disqus