Unmanned Traffic Jam

To the Federal Aviation Administration, civilian UAVs are the new barbarians at the gate.

Aerovironment’s Raven flies surveillance missions in Afghanistan and Iraq; it could do the same for homeland security. (Department of Defense)
Air & Space Magazine | Subscribe

(Continued from page 1)

In 1994, the UAV firm InSitu Inc. set up shop across the Columbia in the little town of Bingen, Washington. Several years later, in 1999, InSitu alumni Bill Vaglienti and Ross Hoag decided Hood River looked like a good bet and moved there to launch their own company—Cloud Cap Technology. The firm has emerged as one of the leading suppliers of the brains of today’s UAVs—the autopilots and payloads that fly the craft and see what needs to be seen.

Inside the two-story Cloud Cap building, computer geeks mingle with mechanics. Around the building are scattered half-assembled miniature aircraft and helicopters; workbenches are stacked with electronics gear, computers, and partially constructed control units.
“We make the enabling technology,” says Mark Zanmiller, the hardware engineer who leads Cloud Cap’s technical sales and marketing group. As sensor technology evolves, inertial and air pressure sensors get both better and smaller; Cloud Cap’s designers are now turning out UAV controllers dainty enough to fit in a coat pocket but packed with amazing capabilities.

One of Cloud Cap’s competitors is CropCam, a division of a company called MicroPilot, a manufacturer of military UAV control systems. CropCam is essentially a lightweight (six pounds) powered glider, equipped with electronic control systems and a Pentax Optio digital camera. It has a ground-based remote control station, but instead of requiring a pilot-operator, the station is used to input GPS-based waypoints, desired elevation, and other flight parameters. (Manual remote controls can be used as a backup.)
After CropCam takes off, it uses the information sent from the remote control station to fly its route and snap photos. Software stitches the photos together for a seamless look at agricultural lands, so farmers can check seed coverage, gauge irrigation effectiveness, and spot early signs of insect infestation. Its high resolution—images taken at 2,100 feet have a resolution of 15 centimeters—“blows satellites away,” says project director Lisa Shaw.

Idaho farmer and UAV convert Robert Blair previously used to monitor his fields with a small, piloted airplane. But getting photographs of his crops that way was expensive—$6,000 for a survey of 1,500 acres—and the airplane had to be booked weeks in advance. So in 2006 he bought a CropCam for about $18,000 and began taking his own aerial photos.

Flying the little UAV isn’t hard, Blair says. When needed, he loads the craft into his pickup—its wingspan is only eight feet—and heads to his fields. Using grid coordinates, he programs the flight path and sets the desired altitude (usually 900 feet). After a quick flight check—rudder and aileron function, battery connection, a look around to ensure the airspace is clear—he starts the engine and simply tosses the craft into the air. “I have it flying in about 15 minutes,” Blair says.

And the results, he says, are amazing. Using digital photos and a computer program to analyze them, Blair can examine his crops for insect damage, lack of water, and more. “We can verify what’s going on out there in the field,” he says.

Blair was so impressed with CropCam, in fact, that he first became a vendor for the company, then created his own company to market UAVs—still in the prototype stage—of his own design, through PineCreek Precision. Technology such as CropCam or his own PineCreek designs, he says, “is what’s going to save the small farmer in the United States.”

UAVs such as CropCam are light, easy to use, and not very expensive. But bigger, more capable UAVs—also based on military designs—are gaining use, at least where a potential mishap doesn’t put people or property at risk.

Last summer, for instance, researchers from the National Oceanic and Atmospheric Administration (NOAA) flew a pair of UAVs over the Greenland ice sheet. Tucson, Arizona-based Advanced Ceramics Research developed the craft, called Manta, for military use. But the pusher-type, propeller-driven craft have a payload capacity (up to 15 pounds) and range (eight to 10 hours of flight time at around 92 mph) attractive to a wide variety of users.

Flying over meltwater-fed lakes atop the ice sheet, the Mantas measured the sunlight penetrating the lakes, allowing researchers to determine their depth and their potential for draining through the ice sheet and out to sea. (Understanding the behavior of the Greenland ice sheet has become critical in recent years, with some scientists predicting that global warming could dump vast amounts of water, now in the form of ice caps, into the oceans.) Because flying over remote areas like the Greenland ice sheet is risky, the task is better suited to unmanned craft.

Comment on this Story

comments powered by Disqus