Genchi’s Obsession

A grad student in Italy salvages Germany’s rarest World War I airplane engines.

Giuseppe Genchi, who found a trove of engine parts at the University of Palermo, spent countless hours restoring an 11-cylinder rotary engine from World War I. (Giorgio Hardouin)
Air & Space Magazine

(Continued from page 1)

In a triumphant 1920 British newsreel, the camera pans over an enormous plain of partially destroyed German biplanes. Entitled The Graveyard of Germany’s Air Ambitions, the film shows a Berlin man with a sledgehammer laboring over a neatly stacked row of engines. “Immense numbers of machines and engines are being destroyed under terms of Peace Treaty,” reads the subtitle.

Yet the Allies were eager to learn what they could from German engineering, so a handful of engines were sent to the United States, Great Britain, France, and Italy for study. The Italian Royal Air Force received its share, and several engines were eventually shipped to the University of Palermo’s Antonio Capetti, one of Italy’s leading aeronautical engineers. In the university archives, Genchi discovered a 1926 document listing the inventory of engines and their provenance. He also found evidence that Capetti or his colleagues took advantage of their access to the German machines in Palermo. He found a blueprint one of them had drawn, for example, documenting the internal structure of an engine. “One of our engines is partially sectioned, and others were taken apart for study,” says Genchi. In 1927, Capetti moved to the University of Padua and then on to a university in Turin, which has a broad collection of aircraft engines.

The analysis of German engines in Italy played a critical role in the country’s aeronautical progress. Studying German World War I technology, says Genchi, benefited the design of World War II aircraft used by Benito Mussolini against the Allies.

Genchi’s restoration work began with the propellers rescued from the scrap pile. He then moved on to the engines, managing to wheedle supplies from the university. Assisted only occasionally by technician Beniamino Drago and a supportive professor, Riccardo Monastero, Genchi laboriously sorted, cleaned, and reassembled. “This is industrial archaeology,” he explains. “And only slowly did I imagine a museum.”

Restoring the Siemens-Halske Sh.IIIa engine—one of the most valuable in the collection—proved one of the greatest challenges. Since the steel parts were never painted, says Genchi, “the engine seemed completely enveloped in rust.” First he tried to remove dirt and debris with a weak solvent that would preserve the natural aging of the metal. “I am inclined to conservation rather than reconstruction,” he says. “I think it’s right to respect even the ravages of time that testify to the antiquity and the history of objects.” But because the dust had turned the metal a dull color, the results of the solvent were disappointing. So Genchi decided to restore the engine to its former luster.

He set about disassembling the entire engine, laying the pieces out on a large table after recording their precise locations. “I discovered with astonishment that the [interior] engine was practically new,” thanks to an internal coating of oil, says Genchi. “Even the piston crowns looked clean and free of burns.” He also spotted serial numbers written by hand during manufacturing.

Genchi meticulously washed each part with water and solvents, scrubbed it with wire brushes to remove the rust, then washed it again with solvent. He followed up by painting all the external parts with a protective varnish to prevent rust. That took almost half the entire time of the restoration. Cleaning and varnishing everything from the tiny plate screws to the massive cylinders (each one could require five hours to sandblast) absorbed months of effort. The crankshaft proved so heavy that lifting it required a crane.

After getting his mechanical engineering degree in April 2009, Genchi won a small grant to complete the museum. He has taken no pay during the two-year project. In the future, he plans to contact Mercedes, Siemens, Fiat, and other companies to supplement his knowledge of the hardware. “For example, it would be interesting to know the correspondence between an engine serial number and the exact aircraft in which it was fitted,” he says. “Often different engines were placed in many different types of aircraft.” In the meantime, Genchi hopes the museum will inspire students and engineering professionals who make the pilgrimage to the unassuming hangar.

He’d like to fire up some of the engines, though that will require more time, money, and space. But comparing the contents of the museum hangar today to what was there in 2007, I have little doubt his World War I engines will someday roar again.

A contributing writer to science and archaeology magazines, Andrew Lawler also writes for Smithsonian, Discover, and other publications.

Comment on this Story

comments powered by Disqus