What Were They Thinking?

The wonderful, unworkable world of airplane design in the years before the Wright brothers.

Alexander Graham Bell was infatuated with the tetrahedral, or four-sided, cell, but only one of his tetrahedral kites flew. (NASM)
Air & Space Magazine

What the Wright brothers accomplished in four years, other would-be aeronauts had been attempting for decades. The brothers distinguished themselves by realizing that what a flying machine needed was a pilot with complete control over the machine, and a machine that would allow itself to be completely controlled. Their wing-warping biplane, the Flyer, was the  first powered airplane that enabled the pilot to control the craft’s pitch, roll, and yaw—its movements along the three axes of rotation: lateral, longitudinal, and vertical.

The brothers’ aeronautical contemporaries, however, did not have the benefit of this wisdom. Because the Wrights wanted to protect their invention by securing patents for it around the world, they initially kept their mastery of powered flight a secret. That left other designers of the day to proceed from intuition, guesses, aesthetic judgments, trust in engine power—everything but the theory of three-axis control.

The Wrights made their first official public demonstration of powered flight in 1908, at an Army Signal Corps field in Virginia. Most competing aircraft designs quickly faded into the background.

Now, a century later, they are enjoying a revival of sorts. These rarely seen photographs of early aviation’s also-rans hail from the archives of London’s Hulton Getty Picture Collection. “They had a big collection of aviation pictures sitting in a back room, covered with dust,” says Peter Almond. “Someone said, ‘Gee, look at all these pictures—let’s put a book together.’ ” The result: The Hulton Getty Picture Collection—Aviation: The Early Years, with text by Almond (Könemann, 1997). The book has the feeling of a family photo album—only with pictures of all the relatives no one talks about.

The World’s First Lifting Body

In 1884 and again in 1891, British inventor Horatio Phillips tested a variety of wing sections in an early wind tunnel, in which he used steam to study the movement of air along various surfaces. “The particles of air struck by the convex upper surface...are deflected upward...thereby causing a partial vacuum over the greater portion of the upper surface,” he wrote. And thus Phillips happened on to the principle behind every successful wing: Air flowing over a curved top surface moves faster—and thus has lower pressure—than air flowing against a wing’s flat bottom. It’s this difference in pressures that produces lift. Had he left it at that, Phillips would have been remembered as having made a great contribution to aeronautical science. But he insisted on trying to build a flying machine.

In 1893 he designed a craft with 50 slats (hence the name “multiplane”). Presumably, he was hoping all those planes would produce lift in abundance. The frame measured 22 feet long and only 1.5 inches wide; the machine was powered by a coal-fired engine that turned the propeller at 400 revolutions per minute. The whole thing looked like a flying Venetian blind.

In 1892, Phillips managed to get the multiplane aloft for part of a lap over a circular track. That wasn’t enough to impress fellow aeronaut and designer Octave Chanute, who wrote in his 1894 classic Progress in Flying Machines: “Mr. Phillips’s experimental machine neglects any provisions for maintaining equilibrium in full flight, or for arising and alighting safely.”

A 1907 design, which bore four frames with 200 tiny planes, flew some 500 feet; no word on how the version shown here, a 1911 single-frame machine, performed. Probably not impressively; the Venetian-blind airfoil is not one that designers have returned to often in the years since.

The Mechanical Albatross

Comment on this Story

comments powered by Disqus