How to Win Enemies and Influence Policy

From the halls of power to field laboratories, the Air Force Chief Scientist helps shape the future of U.S. flight.

Mark Lewis shown here exiting an F-15. (Robins AFB)
Air & Space Magazine | Subscribe

(Continued from page 2)

The Chief of Staff at the time, General Michael Moseley, was an ex-fighter pilot who immediately saw the advantages of Lewis’ suggestions and implemented the changes. Still, the Chief Scientist had stepped on a few toes, most notably those of the general who was in charge of the UAV control station project. “I learned a new four-letter word from that very upset general,” Lewis observes wryly. (The Chief of Staff later told Lewis, “Partner, it’s always good to expand your vocabulary.”)

The Chief Scientist also deals with fairly mundane but no less important issues. Lewis, for example, mentions “sustainment”: essentially, keeping the Air Force’s aircraft and other assets up and running. “The average age of an airplane in the Air Force is about 26 years,” he says. “Airplanes were literally falling apart in the sky.” (In 2007, a National Guard F-15 had come apart in flight, and when an investigation found that faulty longerons could cause fatigue cracks, the fleet was grounded.) “Keeping old airplanes flying, better diagnostic and repair techniques, ways of repairing old parts with newer parts, old materials with new materials, was an area that I focused on.”

Lewis and his military assistant, Colonel Rob Fredell, also an engineer, looked into the use of new hybrid composite materials in aircraft. “One of these materials is called GLARE and combines glass fibers with thin aluminum slices,” Lewis says. “The result is a material that is stronger and lighter than aluminum, but is very crack-resistant and has the repairability of aluminum. Repairing pure composites can be challenging.” Lewis instituted a research effort on GLARE materials at the Air Force Research Laboratory in partnership with contractors such as Lockheed Martin and Alcoa, proving the economic and engineering advantages of using such materials in transports and other aircraft.

The Chief Scientist is invariably on leave from a secure academic or industry position, is paid by the Pentagon at the same rate as that prior job, and serves knowing the old job will be there when his term is up. “It’s not a launching pad to some other job in the Department of Defense,” says Lewis, “which means that the Chief Scientist really isn’t worried about the political consequences of telling the truth.” Mike Yarymovych compares the job to that of a court jester: “You sit at the foot of the king’s throne, and while the courtiers are telling him what he wants to hear, the court jester tells him the truth and gets away with it without getting his head chopped off.”

The biggest project for current Chief Scientist Werner Dahm is heading up a comprehensive study to define a science and technology vision for the next 20 years, much as von Kármán did in the 1940s. It’s particularly critical now, says Dahm: “There are a lot of people who say, ‘Gee, what a terrible time to be Chief Scientist,’ because the budget looks miserable, and at some level that’s true. But that’s exactly when you have to make sure that you have clarity on where the highest-payoff science and technology investments are going to be. I’m having a great time.”

Mark Wolverton is the author of A Life in Twilight: The Final Years of J. Robert Oppenheimer (St. Martin’s Press, 2008).

Comment on this Story

comments powered by Disqus