The Outrageous Adolescence of the F-16

The Viper was small, fast, and in your face

Tough-guy F-15s flank a grown-up F-16 over Nellis Air Force Base, Nevada, in 2007. (USAF/MSGT KEVIN J. GRUENWALD)
Air & Space Magazine

(Continued from page 2)

“I pursued a lightweight radar missile very quietly, as an advanced development project, with no strings to the F-16 or any other fighter,” Loh says. “I worked quietly with missile contractors and the Air Force Development Test Center at Eglin to put together radar missile designs that could fit on Sidewinder stations. This initiative later turned into AMRAAM, the Advanced Medium-Range Air-to-Air Missile.”

Loh wanted the F-16 to be a fighter that was good at both air-to-air and air-to-ground missions, but he also needed to keep the weight down. From 1975 to 1978, he worked on a configuration steering group, led by Major General Alton Slay, dedicated to deciding what systems would go on the F-16. “Its goal was very simple,” Loh says of the group. “Just say ‘no.’ ”

Saying no kept the weight down, but people began complaining that the jet would never be useful, so Loh finally revealed his incubating missile. Slay and Loh also believed that eventually many other systems would fit, since the trend toward miniaturization had been leading to smaller weapons and lighter equipment.

When Slay’s group started its work, the F-16 and F-15 communities began to develop a rivalry, in part because of different management styles. Determined to avoid cost overruns, the F-15 program manager, then-Major General Benjamin Bellis, bypassed normal reporting chains and ran the program like it was classified. Although retired Colonel Wendell Shawler, director of the F-15 joint test force in the early 1970s, recalls giving YF-16 pilots flights in F-15s to demo the F100 engine, he otherwise hardly saw them. Ettinger remembers, “F-15 management didn’t want strangers sitting in the cockpit, making suggestions to change things.”

F-16 management, on the other hand, embraced change. The advanced technology drove an open environment, and pilots, engineers, and maintenance personnel reported every minor problem or idea that cropped up in testing. According to Ettinger, “We let everyone in the world sit in the F-16 cockpit.” Even Prince Charles, who visited Edwards in October 1977 to watch the final glide test of the space shuttle demonstrator Enterprise.

In 1980, retired Major General Larry “Snake” Wells, then a lieutenant, was a pilot in the first F-16 class at Hill Air Force Base in Utah, with other lieutenants fresh from pilot training. He remembers learning radar intercepts in the back seat of an F-4 simulator. Instead of the standard flight manual, most information about the jet was in a set of self-paced training notebooks of dubious value. Pilots made things up as they went along, and one pilot attempted to design a short-field landing technique by touching down while applying the brakes, with predictable results: an 800-foot landing roll accompanied by cherry-red brakes, black smoke, and flames shooting from beneath the jet. Where most aircraft might see a handful of procedural changes during a year, the F-16 often racked up at least one change per week, and sometimes the change reverted to the original procedure a few weeks later.

In spite of the churn, “the F-16 was awesome,” says retired Lieutenant Colonel John Armor. He transitioned from flying the F-4, which had such a poor cooling system that if pilots closed the canopy while on the ground, they were immediately drenched in sweat. Armor says of the F-16, “Number one was the air conditioning worked on the ground.”

Every pilot I interviewed for this story mentioned how much fun the airplane was to fly: It had easy handling qualities, the bubble canopy afforded unimpeded visibility, and the head-up display, in which the airplane’s vital statistics are shown on the windshield, improved awareness. Stickell, an instructor pilot at Hill after the test program, remembers how easy it was to teach even beginning pilots to fly air-to-ground missions. What took months of practice in the F-100 could be learned in three flights in the F-16. However, some transitioning pilots complained about landings. F-4 pilots were used to flying a “controlled crash,” which kept the heavy airplane firmly planted on the runway, but the F-16’s light weight and wimpy brakes led to bouncy landings, mangled tires, and unhappy crew chiefs. Other pilots had problems with the early airplanes’ fixed sidesticks. Later incarnations allowed some minor stick movement as a sort of psychological fix.

Even with the openness of F-16 management and test flights conducted by both test pilots and operational pilots, the test program didn’t uncover all the jet’s problems. In the early 1980s, several pilots died when they flew into the ground because of electrical problems with the flight control system—precisely the kind of accident some people feared would happen in an aircraft so unstable that it relied on its electrical systems to fly. The fix provided emergency backup power from the aircraft battery as well as protecting the flight control computers from voltage surges.

Such a revolutionary fighter presented other hazards. Although G-suits were improved to react faster, the rapid onset of G forces could cause a pilot to black out before he even knew what was happening. Tactical Air Command beefed up centrifuge training to help pilots avoid loss of consciousness due to high G loads.

About Eileen Bjorkman

Eileen Bjorkman, a retired U.S. Air Force flight test engineer, is working on a book about the history of homebuilt aircraft.

Read more from this author

Comment on this Story

comments powered by Disqus