CubeSats to the Moon (Mars and Saturn, Too)

The next generation of planetary explorers.

Artist's concept of the Interplanetary NanoSpacecraft Pathfinder In Relevant Environment (INSPIRE) CubeSat. ( NASA/JPL)
Air & Space Magazine | Subscribe

(Continued from page 2)

The first CubeSat to make it beyond Earth orbit may be JPL’s Interplanetary NanoSpacecraft Pathfinder In Relevant Environment (INSPIRE), two identical CubeSats that will be placed into a solar orbit. The team will load each with a miniaturized X-Band radio transponder and a couple of off-the-shelf processing boards to see how they perform. And, to test the ability of a nanosatellite to gather data in deep space, each CubeSat will carry a magnetometer to gauge the solar wind, a star-tracker for orientation, and an imager. INSPIRE’s launch date hasn’t been set, but is expected within the next two years.

What if the experiments don’t work? It’s possible that some things simply can’t be done with a tiny spacecraft, including exploring the solar system.

“It’s a big question right now where that threshold is,” says Pingree. She points out that on small satellites, there’s no room for backup systems, and miniaturized instruments may be more prone to failure. The longer and farther a spacecraft travels, the more important those factors become.

Until these questions are answered, most of the long-range CubeSat dreams of planetary scientists and engineers will remain conceptual. Perhaps the most ambitious dream is the student-led, crowd-funded Time Capsule to Mars, which aims to land a CubeSat containing millions of digitized photos and personal messages on the surface of Mars. For now, it’s in the baby steps of teams like those from Vermont Tech and St. Louis University that the revolution pushes forward.

“It’s no one group that’s making this actually be successful,” says Andy Klesh, who heads up the INSPIRE project. “We need everybody to kind of move along with us.”

One of INSPIRE’s goals will be to snap a photo of Earth from afar, a kind of visual proof that CubeSats belong in deep space. “If we were actually able to take an Earthrise image—just like Apollo took the Earthrise image from the moon—from this spacecraft, I think that would really be an eye-opening experience for many people, saying these CubeSats can do a lot more than what we thought they could,” says Klesh.

Cox believes the main force limiting development of CubeSats for interplanetary missions is the space industry’s conservative nature. “There really isn’t anything getting in anybody’s way, other than history, other than the fact that you could not do this five years ago,” he says.

On that cold night last November, Carl Brandon watched Vermont Tech’s CubeSat launch from NASA’s Wallops Flight Facility in Virginia. Standing alongside two of his undergraduate students (the bulk of his team) and his nine-year-old son, Jack, he had the feeling that the nature of space exploration is changing. As the Minotaur 1’s solid fuel booster thundered off the pad, the students, Dan and India, gave each other an understated but heartfelt high-five.

Jack watched until the rocket disappeared, then asked, “Now what?”

Now, we see if it works.

Comment on this Story

comments powered by Disqus