Konnichi Wa, Kibo

The International Space Station says hello to its newest addition, made in Japan.

Three to get ready: Astronauts (from left) Satoshi Furukawa, Akihiko Hoshide, and Naoko Yamazaki are all in training for duty on the space station. (NASA)
Air & Space Magazine | Subscribe

(Continued from page 3)

Nowhere is this more true than on the space station, the largest orbital construction project in history. The station's pieces were built in multiple countries, and the assembly will take more than a decade. New modules like Kibo and Europe's Columbus have to attach to U.S. and Russian modules that have been in space for years. To complicate things more, the station is pressurized, and adding or removing air can change the shape and stiffness of the modules, which have a hull thickness of just 1/16 of an inch. All of these factors raise the same concerns about hardware compatibility we had experienced with Japan's Space Flyer Unit.

Japan finds itself playing a different role than it did on past shuttle flights. Even when the science experiments were Japanese, the vehicle—and the overall mission responsibility—were NASA's. Now, as a full partner in the station program, JAXA will control Kibo from the Tsukuba Space Center in Japan, just as NASA controls its segment from Houston, Russia controls its segment from Moscow, and Europe runs the Columbus module from outside Munich. With the lives of astronauts at stake, decisions will have to be made jointly, but quickly and efficiently. On the first Japanese assembly flight, Mayumi Matsuura will be in Tsukuba as the lead flight director for Kibo. "This is the first time for us to deal with minute-by-minute operations on a daily basis," she says.

To prepare for these duties, JAXA flight controllers have been participating in simulations with their international counterparts, learning how to make routine decisions and handle emergencies. Things don't always go smoothly, according to Mohri, who has been involved in some sessions. "Compared to NASA, JAXA is immature still," he says. When Japanese controllers fail in these simulations, it can be awkward, he admits. Still, every spacefaring nation has had to walk the same road. "Always we are learning," says Kamigaichi, who is confident any problems will be worked out.

The learning curve extends to training astronauts on the ground, which has its own risks. I know that from direct experience. Several years ago I had an opportunity to try out a new Japanese underwater tank built by JAXA for spacewalk training. The pool is similar to the one used to train astronauts at NASA's Johnson Space Center in Houston, but is smaller and designed specifically to accommodate Kibo.

During one run to evaluate the setup of Kibo's pressurized module and the placement of outside payloads, I was methodically moving along the border of the exposed facility when I felt a sudden depressurization of my spacesuit, followed by the feeling of water pressure squeezing my legs like giant blood pressure cuffs. I sank so fast that my two safety divers were unable to catch me. Within seconds I was at the bottom of the 34-foot-deep pool. Water pressure was now pushing my soft body up into the hard parts of the suit and helmet. That put severe pressure on my diaphragm, causing pain and making it very difficult to breathe.

Suddenly I was surrounded: A flurry of cameramen and utility divers joined the safety divers to lift me from the bottom. It seemed to me to take only five or 10 seconds, but later review showed I was at the bottom for a minute and a half.

As it turned out, a technician had mistakenly turned a valve that allowed the suit to depressurize. He came to me the next day and apologized profusely. I assured him that no harm was done and that in the world of spaceflight, training accidents are part of the risk we accept. But I remember thinking that this was the sort of accident that occurs early in the life of a facility. NASA's underwater tank has occasional hardware failures, but there are very few procedural errors. The hard lessons were learned years ago.

Mohri says that although the Japanese public approves of space exploration, if the government is to continue funding space ventures, Kibo must produce "clear results" to show that the roughly $9 billion invested in the space station was not wasted. Those results could come in the form of scientific progress. Mohri, though, sees another, perhaps more important, benefit coming from the country's space station participation. He views Kibo as a kind of political laboratory, where the four major partners—the United States, Russia, Europe, and Japan—have to learn to compete and cooperate at the same time. Each will pursue its own goals, but in an emergency, they'll have to pull together and make decisions for the common good. "If something wrong happens inside Kibo, then four ground stations have to talk about whether we abandon the module or not, and how they can help," he says.

Mohri has been preaching the value of the space station as "a case study of how we can work together to save Earth." If the idea catches on, then perhaps Japan, the partner whose learning curve has arguably been the steepest, will have discovered the project's true purpose.

Comment on this Story

comments powered by Disqus