Orion’s Brain

NASA’s new space capsule has a mind of its own.

Astronauts Cady Coleman and Rick Arnold step into a mock-up of the Orion crew module at NASA's Johnson Space Center in Houston. (NASA)
Air & Space Magazine | Subscribe

(Continued from page 1)

Jim Ratliff, NASA’s cockpit team lead, is tasked with coordinating the design of the ship’s control center. He was the project manager for the shuttle’s conversion to a glass cockpit, beginning in the late 1990s, which took a flight deck studded with instruments and consolidated much of it on nine flat panels. Now he’s on to the next generation.

Two of the control computers could fully fail and the third would still fly the vehicle. Not surprisingly, a backup flight computer built with an entirely different hardware system can take over from the main ones in case of emergency.
There is one more worst-case scenario—a complete power failure. For that situation, Orion will carry an emergency system powered by independent batteries that will give the crew enough control to bring the vehicle home safely.

“Our computers won’t talk, but they'll be smarter than HAL—and better behaved,” says astronaut Jim Dutton, referring to the pernicious onboard computer in the 1968 film 2001: A Space Odyssey. Dutton is one of a dozen who are designing the crew exploration vehicle cockpit. He’s no stranger to automation, having accumulated 350 hours flying the F/A-22A Raptor as a test pilot.

“In the Raptor, sensor fusion is a type of automation,” he says. “It relieves the pilot of being a sensor integrator and allows him to focus on his primary job as a tactician. With Orion, all that automation also frees up the pilot and supports his mission of exploration.”
Is there any resistance among fighter-pilots-turned-astronauts to taking Orion’s control systems away from humans?
“There’s no rub there,” says Dutton. “Our goal is to accomplish the mission. Software has a huge role to play. We’re interested in making the leap from the fighter pilot mindset. Spaceflight is exciting no matter what.”
Dutton adds that a lot of pilots came to the astronaut corps from advanced cockpits in the F-15, F/A-18, and now F/A-22, and bring an understanding of automation principles from the military.

“In fact, the shuttle is severely lacking there, which means many pilots have had to take a step back from the modern, upgraded fighter cockpit to fly the shuttle. With Orion, we want to go the other way.”
Future pilot-astronauts also look forward to full redundancy between the two operators, another welcome improvement. “We don’t want to return to the partitioned cockpit as in the shuttle, where only one crew member can reach certain switches,” says Dutton. That configuration sometimes leads to situations in which one astronaut is overwhelmed with tasks while the other can do little to assist.

“In the shuttle, there isn’t enough room for full operator redundancy because of all the switches,” Dutton says. “With Orion, you’ll be able to change displays as if it’s a revolving panel.”
Orion’s flat screens will provide the most striking departure from previous space vehicles. Four flat-panel displays, each about the size of a large desktop monitor, will occupy the instrument panel. These will not be touch screens, as floating objects and astronauts might accidentally bump one. Instead, they’ll be surrounded by manual dials and keypads. Engineers are also considering using a track ball similar to those in fighter aircraft cockpits.

On ascent, the screens will operate with a vague similarity to those in conventional aircraft. One might display artificial horizons and headings; another might display speed, and altitude. The remaining two might show other key parameters, such as the rocket’s electrical or life support systems.

Once in orbit, the screens will switch to new readouts. One or more might show rendezvous and docking information, probably with live video, and with the vehicle’s path, range, and rate of change in closing to, say, the space station or a Mars transfer vehicle.
The other screens may display updated data on the ship’s life support system status and fuel supply.

The screens will use graphic symbols (still being developed) whenever those are deemed the most intuitive way to communicate information such as electronic checklists, malfunction procedures, warning indicators, and motion imagery.

“One of the challenges we’ll face is that the amount of info we’ll display needs to be balanced against the amount of real estate we’ll need,” says Dutton. The team started out with three screens but decided to add a fourth.

Comment on this Story

comments powered by Disqus