Retro Rocketeers

If a capsule was good enough to get a crew to the moon, these old-timers say, it’s good enough to get a crew back to Earth.

Lockheed Martin has considered both lifting bodies and ballistic capsules for the proposed Crew Exploration Vehicle. The rounded capsule is shown attached to a service module, which provides propulsion. (Lockheed Martin)
Air & Space Magazine | Subscribe

(Continued from page 2)

Myers, briefing the House subcommittee on space a few months later, called the dry-land landing system “the only major new technology, other than long-duration storage in space,” needed to convert an Apollo command module to a lifeboat. The requirement to make an emergency return anywhere on Earth within 24 hours would add expense and complication, since NASA would need a large number of landing sites to be on standby. But if a service module were attached to provide steering and propulsion, the number of sites would drop dramatically.

Testifying before that same panel, Michael Griffin, a former NASA chief engineer, dismissed worries about landing accuracy. Now with In-Q-Tel of Arlington, Virginia, Griffin told the panel: “Most of the Apollo landing dispersions would have fit easily within the boundaries of Dulles Airport. It is not necessary to do better than that.”

Szalai’s group then turned to the subject of heat protection. The ablative material used on the Apollo heat shield—a phenolic epoxy resin—is no longer manufactured. Fortunately, better materials have come along since, some of which have even been flight-qualified. In fact, the heat shield for an Apollo-derived crew rescue vehicle would have a key advantage over the original: It could be a clip-on, discarded after the fiery return to Earth. And that, said Griffin, made the Apollo-derived rescue vehicle “a system with only one non-reusable component that…can be, almost literally, dirt cheap.”

If the Apollo command module appeared to be a perfectly good lifeboat, all the same advantages applied to the crew transfer, or “up” vehicle. The capsule could easily be perched on an expendable rocket, like a Delta or Atlas, for delivery to orbit. If NASA wanted to return to the moon, a wingless capsule looked even more appealing. Griffin told Congress that a semi-ballistic capsule like Apollo’s would be “much better adapted [than winged vehicles] to any requirements to go beyond low Earth orbit.”

As their analysis kept pointing to the advantages of the Apollo capsule, some of the oldtimers found themselves surprised. Coming into the meeting, Szalai thought “there were expectations [within NASA] that the [Orbital Space Plane] would end up as some type of winged vehicle.” The space veterans he invited were future-oriented, and their instincts were to produce new designs. If anything, he says, “initially the bias in the room was away from the capsule, not for it.” But toward the end of the second day, Szalai voiced his thoughts: “I’m an airplane guy. Why am I recommending a capsule?” Then John Young piped up: “So am I.”

At the Congressional hearing, Myers said, “If all things were equal, I’d choose winged vehicles,” based on their gentler entry and ability to reach a wider range of landing sites. “Unfortunately, they are not known to be equal. And that’s why the team recommended a thorough study of the Apollo CM/SM as a CRV/CTV.” The team estimated it could be built within four to six years of NASA’s go-ahead.

And so it may be. Even before Szalai’s group met, NASA’s two main contractors, Boeing and Lockheed Martin, were studying capsules—some rounded like the Soyuz, some cone-shaped like Apollo—as contenders for the crew rescue vehicle. Now that the plans also call for going beyond Earth orbit, the wingless designs may win the day.

“Everybody likes sleek and beautiful,” notes Volker Roth, deputy director of Boeing’s Office of Orbital Space Programs in Huntsville, Alabama. “But is that safe and robust?” And former astronaut Michael Coats, who heads Lockheed Martin’s advanced space transportation division, says current astronauts may not be that stuck on wings. He thinks they’ll go for whatever is “safe, simple, and soon.”

Not everyone has jumped on the Apollo bandwagon. Last July, at a forum held in Washington, ex-Congressman Robert Walker, now a consultant who often serves on aerospace advisory committees, said that any capsule design would be a problem for Congress. “It becomes, in the minds of people here on Capitol Hill, a huge step backwards,” he says. “It means, essentially, that we’re trying to adapt technology that we know how to build.”

Some advocates of reusable spaceplanes don’t want to give up on the possibility of building a true single-stage-to-orbit vehicle, which could also have military and civilian passenger applications. Dana Rohrabacher (R-Calif.), who chairs the House subcommittee on space, has been among those pushing hardest for NASA to invest in “next generation” space transportation. But, he told Space News last year, “If somebody came in and showed me that a capsule, engineered in the right way, could accomplish all the things we need and was cheaper and would be ready to go quicker, than I would be open-minded to it.”

Comment on this Story

comments powered by Disqus