The Ground

Astronauts get the glory, but flight directors run the show.

Tough under pressure: Space station flight director Mark Ferring at his console during last year's STS-114 mission. (NASA)
Air & Space Magazine | Subscribe

(Continued from page 3)

STS-95 in October 1998. IVHM uses a network of pressure, temperature, strain, and other sensors to monitor the vehicle’s condition without aid from mission control, and even to do some limited troubleshooting.

The nine new flight directors are helping to plan the next generation of NASA space vehicles, even while their main responsibilities still lie with the shuttle and space station. I accompany Weigel and another new director, Brian Smith, to a meeting with the deputy project manager for the Crew Exploration Vehicle, or CEV, the upgraded Apollo-style capsule that will ferry astronauts to the moon and back beginning in the next decade.

We gather around a circular table inside JSC’s Building 9, a massive hangar that houses, among other things, a life-size training mockup of various space station modules. When we arrive, instructors are conducting a simulation of a cabin fire, complete with billowing white smoke and blaring alarms. Directly behind us is a metal skeleton of the CEV, the framework for a full-scale model. For now, it’s empty except for a pair of fuzzy dice dangling from its ceiling.

The purpose of the meeting is to solicit from the flight directors specific suggestions for the spacecraft’s interior layout, software systems, and other design features. Being in on these early decisions should give flight directors a tremendous advantage downstream, says Kranz, and will make them “far better at coping with the complexities of the new exploration program.” He points to the colorful console displays that allow flight directors and flight controllers to keep tabs on every system in the spacecraft, such as navigation, guidance, communications, payload, life support, software, and extravehicular activity. Instead of strings of numbers, the modern CEV displays have easy-to-interpret graphics. “It gives flight directors a three-dimensional visualization of what’s going on,” says Kranz. “With Apollo 13, it took us almost 25 minutes to figure out we had an explosion. Whereas in today’s world, they would have known it instantly.”

But improved or not, these are still just tools. For the foreseeable future, flight directors will continue to rely on their own intuitions and instincts more than on technological wizardry. “It’s the human element that allows them to be successful,” says Readdy. The danger is in losing sight of that, of relying too much on technology. During the 1990s, when the shuttle was flying several times a year, he says, “there was an attempt to depersonalize the flight director’s job. It wasn’t about the people; it was about the science and the hardware.” It all got “antiseptic and routine,” he observes.

Even as they drill endlessly, routine is something the flight directors try to avoid. When it comes to spaceflight, a sense of routine can lead to trouble. “I’m not going to sugarcoat it,” says Jones. “Ronald Reagan deemed the shuttle operational after the third or fourth flight. ‘Operational’ means we have nothing else to learn about the vehicle. That set a tone. Apathy set in. And NASA got in that mode that leads to accidents.”

Being a flight director, says Kranz, is “about staying on the edge,” always mindful that the U.S. space program could come to a halt because of something that happens on your next shift. No wonder, then, that Milt Heflin’s “Welcome to your new job” speech was so somber.

Comment on this Story

comments powered by Disqus